Hordeum bulbosum — as a source of effective resistance to barley leaf rust

Jerzy H. Czembor

j.h.czembor@ihar.edu.pl
Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie (Poland)

Aleksandra Pietrusińska


Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie (Poland)

Urszula Piechota


Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie (Poland)

Abstract

Leaf rust caused by fungus Puccinia hordei has a great economic importance. Bulbous barley grass (Hordeum bulbosum L.), is the member of the secondary barley genepool. In the presented study, 26 recombinant lines obtained from crosses of barley cultivars of H. vulgare and H. bulbosum were tested with 8 differential isolates of leaf rust. Based on screening tests it was concluded that resistance to leaf rust was present in 22 from total 26 recombinant lines. Outstanding resistance to leaf rust was identified in 7 lines. These lines showed resistance reaction 0 for inoculation with all isolates used. However, based on resistance reaction we concluded that 9 lines may have had more than one resistance gene because they expressed different resistance reactions. For 2 lines we postulated presence of one or more resistance genes expressed as resistance reaction 2. In addition, expression of resistance reaction 2 is showing also a possibility for the presence in these lines of some level of partial resistance. Barley cultivars used as parents showed lack of resistance. It confirms that resistance loci present in tested recombinant lines originated from H. bulbosum parents. Based on results it may be concluded that leaf rust resistance identified in recombinant lines may represent new unique type of resistance. Hybrid lines with identified resistance to leaf rust originating from H. bulbosum can be used in breeding programmes to provide farmers with cultivars with highly effective resistance to this disease.


Keywords:

Hordeum bulbosum, leaf rust, Puccinia hordei, recombinant line, resistance gene

Backes G., Madsen L. H., Jaiser H., Stougaard J., Herz M., Mohler V., Jahoor A. 2003. Localisation of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley Hordeum vulgare ssp. spontaneum line. Theor. Appl. Genet. 106: 353 — 362.
Google Scholar

Bonman J. M., Bockelman H. E., Jackson L. F., Steffenson B. J. 2005. Disease and insect resistance in cultivated barley accessions from the USDA National Small Grains Collection. Crop Sci. 45: 1271 — 1280.
Google Scholar

Bothmer von R., Jacobsen N., Rikke C. B., Jørgensen B., Linde-Laursen I. 1995. An ecogeographical study of the genus Hordeum. IPGRI, Rome, Italy: 1 — 129.
Google Scholar

Bothmer von R., Sato K., Komatsuda T., Yasuda S., Fischbeck G. 2003. The domestication of cultivated barley. In: Bothmer von R, Hintum van Th, Knüpffer H, Sato K. eds., Diversity in Barley Hordeum vulgare. Elsevier Science B. V., Amsterdam, The Netherlands: 9 — 27.
Google Scholar

Boyd L. A., Ridout C., O’Sullivan D. M., Leach J. E., Leung H. 2013. Plant-pathogen interactions: disease resistance in modern agriculture. Trends in Genetics 29: 233 — 240.
Google Scholar

Brooks W. S., Griffey C. A., Steffenson B. J., Vivar H. E. 2000. Genes governing resistance to Puccinia hordei in thirteen spring barley accessions. Phytopathol 90: 1131 — 1136.
Google Scholar

Brown J. K. M., Hovmøller M. S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297: 537 — 541.
Google Scholar

Czembor J. H. 2007. Powdery mildew resistance in recombinant lines originating from crosses between Hordeum vulgare and Hordeum bulbosum. Plant Breeding and Seed Science 56: 85 — 99.
Google Scholar

Czembor J. H., Bladenopoulos K. 2007. Resistance to leaf rust Puccinia hordei in Greek barley cultivars and breeding lines. Cereal Rusts and Powdery Mildews Bull., [www.crpmb.org/] 2007/0215czembor.
Google Scholar

Czembor J. H., Czembor H. J. 2001. Inheritance of resistance to powdery mildew Blumeria graminis f.sp. hordei in selections from Moroccan landraces of barley. Cereal Res. Comm. 293 — 4: 281 — 288.
Google Scholar

Czembor H. J., Czembor J. H. 2007a. Leaf rust resistance in spring barley cultivars and breeding lines. Plant Breeding and Seed Science 55: 5 — 19.
Google Scholar

Czembor H. J., Czembor J. H. 2007b. Leaf rust resistance in winter barley cultivars and breeding lines. Plant Breeding and Seed Science 56: 47 — 56.
Google Scholar

Czembor J. H., Czembor H. J. 2008. Leaf rust resistance in hybrid lines derived from crosses between Hordeum vulgare and Hordeum bulbosum. Plant Breeding and Seed Science 57: 13 — 20.
Google Scholar

Czembor J. H., Czembor H. J., Attene G., Papa R. 2007. Leaf rust resistance in selections from barley landraces collected in Sardinia. Plant Breeding and Seed Science 56: 73 — 84.
Google Scholar

Czembor P. C., Pietrusińska A., Czembor H. J. 2006. Mapping new resistance gene to Puccinia hordei Otth. in barley. In: Cereal Science and Technology for Feeding Ten Billion People: Genomics Era and Beyond. Proceedings from EUCARPIA — Cereal Section Conference, 13-17 Nov. Lleida, Spain: 54.
Google Scholar

Dean R., Van Kan J. A. L., Pretorius Z. A., Hammond-Kosack K. E., Di Pietro A., Spanu, Rudd J. J., Dickman M., Kahmann R., Ellis J., Foster G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology13: 414 — 430.
Google Scholar

Derevnina L., Singh D., Park R. F. 2015. The genetic relationship between barley leaf rust resistance genes located on chromosome 2HS. Euphytica 203: 211 — 220.
Google Scholar

Finckh M. R., Gacek E. S., Goyeau H., Lannou C., Merz U., Mundt C. C., Munk L., Nadziak J., Newton A. C., de Vallavielle-Pope C., Wolfe M. S. 2000. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20: 813 — 837.
Google Scholar

Fischbeck G. 2003. Diversification through breeding. In: Bothmer von R., Hintum van Th., Knüpffer H., Sato K. Eds, Diversity in Barley Hordeum vulgare, Elsevier Science B.V., Amsterdam, The Netherlands, pp. 29 — 52.
Google Scholar

Fetch T. Jr., Pickering R. A., Johnston P. A. 2004. Novel stem rust resistance in barley lines with introgressions of Hordeum bulbosum chromatin. 11th International Cereal Rusts and Powdery Mildews Conference: Abstracts, Norwich, England, 24–27 August 2004: A2.18.
Google Scholar

Franckowiak J. D. 2000. Coordinator’s report: Chromosome 2H 2. Barley Genetic Newsl. 30: 68 — 71.
Google Scholar

Golegaonkar P. G., Park R. F., Singh D. 2010. Genetic analysis of adult plant resistance to Puccinia hordei in barley. Plant Breeding 129: 162—166.
Google Scholar

Johnston P. A., Niks R. E., Meiyalaghan V., Blanchet E., Pickering R. 2013. Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley Hordeum vulgare L.. Theor. Appl. Genet. 126: 1613 — 1625.
Google Scholar

Johnston P. A., Meiyalaghan Y., Forbes M. E., Habekuß A., Butler R. C., Pickering R. 2015. Marker assisted separation of resistance genes Rph22 and Rym16Hb from an associated yield penalty in a barley: Hordeum bulbosum introgression line. Theor. Appl. Genet. 128:1137 — 1149.
Google Scholar

Kasha K. J., Kao K. N. 1970. High frequency haploid production in barley Hordeum vulgare L. Nature 225: 874 — 876.
Google Scholar

Levine M. N., Cherewick W. J. 1952. Studies on dwarf leaf rust of barley. U.S. Department of Agric. Tech. Bull. No. 1056, Washington, DC: 1 — 17.
Google Scholar

Luck J., Spackman M., Freeman A., Trębicki P., Griffiths W., Finlay K., Chakraborty S. 2011. Climate change and diseases of food crops. Plant Pathology 60: 113 — 121.
Google Scholar

Martinez F., Niks R. E., Rubiales D. 2001. Partial resistance to leaf rust in a collection of ancient Spanish barleys. Hereditas 135: 199 — 203.
Google Scholar

Mazaraki M., Grabowska J. 1998. Population structure of barley leaf rust Puccinia hordei Otth. in Poland. Biul. IHAR 207: 81 — 86.
Google Scholar

McDonald B.A., Linde C. 2002. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124: 163 — 180.
Google Scholar

Nevo E. 1985. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the fertile crescent. In: Shewry PR Ed, Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, Wallingford: 19 — 43.
Google Scholar

Newton A. C., Akar T., Baresel J. P., Bebeli P. J., Bettencourt E., Bladenopoulos K. V., Czembor J. H., Fasoula D. A., Katsiotis A., Koutis K., Koutsika-Sotiriou M., Kovacs G., Larssson H., Pinheiro de Carvalho M. A. A., Rubiales D., Russell J., Dos Santos T. M. M., Vaz Patto M. C. 2010. Cereal landraces for sustainable agriculture. A review Agronomy for Sustainable Development. 302: 237 — 269.
Google Scholar

Ney B., Bancal M. O., Bancal P., Bingham I. J., Foulkes J., Gouache D., Paveley N., Smith J. 2013. Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses. Eur. J. Plant Pathol. 135: 561 — 580.
Google Scholar

Nieróbca A., Horoszkiewicz-Janka J., Czembor J. H. 2003. Plant protection as an important element of cereals cultivation technology in the European Union. Pamiętnik Puławski 132: 311 — 320.
Google Scholar

Niks R. E., Walther U., Jaiser H., Martinez F., Rubiales D., Andersen O., Flath K., Gymer P., Heinrichs F., Jonsson R., Kuntze L., Rasmussen M., Richter E. 2000. Resistance against barley leaf rust Puccinia hordei in West-European spring barley germplasm. Agronomie 20: 769 — 782.
Google Scholar

Ochoa J., Parlevliet J. E. 2007. Effect of partial resistance to barley leaf rust, Puccinia hordei, on the yield of three barley cultivars. Euphytica 1533: 309 — 312.
Google Scholar

Park R. F. 2003. Pathogenic specialization and phenotype distribution of Puccinia hordei Otth. in Australia, 1992–2001. Plant Dis. 87: 311 — 1316.
Google Scholar

Park R. F., Karakousis A. 2002. Characterisation and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar Reka 1 and several Australian barleys. Plant Breed. 121: 232 — 236.
Google Scholar

Park R. F., Poulsen D., Barr A. R., Cakir M., Moody D. B., Raman H., Read B. J. 2003. Mapping genes for resistance to Puccinia hordei in barley. Australian J. Agric. Res. 54: 1323 — 1333.
Google Scholar

Pickering R. A. 1994. The chromosome stability of Hordeum vulgare L. × Hordeum bulbosum L. chromosome substitution plants grown at two temperatures. Hereditas 1211: 39 — 43.
Google Scholar

Pickering R. A. 2000. Do the wild relatives of cultivated barley have a place in barley improvement? Barley Genetics VIII. Proceedings of the 8th International Barley Genetics Symposium, Adelaide, Australia, 22–27 October, 2000 1: 223 — 230.
Google Scholar

Pickering R.A ., Devaux P. 1992. Haploid production: approaches and use in plant breeding. In: Shewry PR Ed, Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, Wallingford: 519 — 547.
Google Scholar

Pickering R. A., Johnston P. A. 2005. Recent progress in barley improvement using wild species of Hordeum. Cytogenet. Genome Res. 109: 344 — 349.
Google Scholar

Pickering R. A., Timmerman G. M., Cromey M. G., Melz G. 1994. Characterisation of progeny from backcrosses of triploid hybrids between Hordeum vulgare L. 2× and H. bulbosum L. 4× to H. vulgare. Theor. Appl. Genet. 88: 460 — 464.
Google Scholar

Pickering R. A., Hill A. M., Michel M., Timmerman-Vaughan G. M. 1995. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley H. vulgare L. chromosome 2 2l. Theor. Appl. Genet. 91: 1288 — 1292.
Google Scholar

Pickering R. A., Steffenson B. J., Hill A. M., Borovkova I. 1998. Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × H. bulbosum hybrid. Plant Breed. 117: 83 — 84.
Google Scholar

Pickering R. A., Malyshev S., Künzel G., Johnston P.A., Korzun V., Menke M., Schubert I. 2000a. Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor. Appl. Genet. 100: 27 — 31.
Google Scholar

Pickering R., Jonhston P.A., Timmerman-Vaughan G. M., Cromey M. G., Forbes E. M., Steffenson B. J., Fetch Jr. T. G., Zhang L., Murray B. G., Proesler G., Habekuß A., Kopahnke D., Schubert I. 2000b. Hordeum bulbosum — A new source of disease and pest resistance genes for use in barley breeding programmes. 30: 6 — 9.
Google Scholar

Pickering R., Niks R., Jonhston P.A., Butler R. 2004a. Importance of the secondary gene pool in barley genetics and breeding. II. Disease Resistance, agronomic performance and Quality. Czech J. Genet. Plant Breed. 40: 79 — 85.
Google Scholar

Pickering R. A., Hudakova S., Houben A., Jonston P. A., Butler R. C. 2004b. Reduced metaphase I associations between the short arms of homologous chromosomes in a Hordeum vulgare L. × H. bulbosum diploid hybrid influences the frequency of recombinant progeny. Theor. Appl. Genet. 109: 911 — 916.
Google Scholar

Pickering R., Klatte S., Butler R. C. 2005. Reduced chromosome association between the short arms of 5H homologues in Hordeum vulgare L. at metaphase I. Plant Breed. 124: 416 — 418.
Google Scholar

Pickering R., Klatte S., Butler R. C. 2006a. Identification of all chromosome arms and their involvement in meiotic homoelogous associations at metaphase I in 2 Hordeum vulgare L. × Hordeum bulbosum L hybrids. Genome 49: 73 — 78.
Google Scholar

Pickering R., Ruge-Wehling B., Johnson P.A., Schweizer G., Ackermann P., Wehling P. 2006b. The transfer of a gene conferring resistance to scald Rynchosporium secalis from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed. 125: 576 — 579.
Google Scholar

Ruge B., Linz A., Pickering R., Proeseler G., Greif P., Wehling P. 2003. Mapping of Rym14Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor. Appl. Genet. 107: 965 — 971.
Google Scholar

Russell J. R., Ellis R. P., Thomas W. T. B., Waugh R., Provan J., Booth A., Fuller J., Lawrence P., Young G., Powell W. 2000. A retrospective analysis of spring barley germplasm development from foundation genotypes' to currently successful cultivars. Mol. Breed. 6: 553 — 568.
Google Scholar

Shtaya M. J. Y., Sillero J. C., Rubiales D. 2006a. Search of partial resistance against Puccinia hordei in barley landraces from the Fertile Crescent. Plant Breed. 125:343 — 346.
Google Scholar

Shtaya M. J. Y., Sillero J. C., Rubiales D. 2006b. Screening for resistance to leaf rust Puccinia hordei in collections of Spanish barleys. Breed Sci. 56:173 — 177.
Google Scholar

Shtaya M. J. Y., Sillero J. C., Rubiales D. 2006c. Infection of new pathotype of Puccinia hordei with virulence for the resistance gene Rph7. European J. Plant Pathol. 162: 103 — 106.
Google Scholar

Shtaya M. J. Y., Sillero J. C., Flath K., Pickering R., Rubiales D. 2007. The resistance to leaf rust and powdery mildew of recombinant lines of barley Hordeum vulgare L. derived from H. vulgare × H. bulbosum crosses. Plant Breed. 126: 259 — 267.
Google Scholar

Smit G., Parlevliet J. E. 1990. Mature plant resistance of barley to leaf rust, another type of resistance. Euphytica 50: 159 — 162.
Google Scholar

Steffenson B. J. 2002. Coordinator’s report: Disease and pest resistance genes. Barley Gen. Newsl. 32: 179 — 184.
Google Scholar

Thomas W. T. B. 2003. Prospects for molecular breeding of barley. Ann. Appl. Biol. 142: 1 — 12.
Google Scholar

Thörn E. C. 1992a. The influence of genotype and environment on seed and embryo development in barley Hordeum vulgare L. after crossing with Hordeum bulbosum L. Euphytica 59:109 — 118.
Google Scholar

Thörn E. C. 1992b. Embryo development in two barley genotypes after self-pollination and pollination with Hordeum bulbosum L. Euphytica 65: 93 — 98.
Google Scholar

Walters D. R., Avrova A., Bingham I. J., Burnett F. J., Fountaine J., Havis N. D., Hoad S. P., Hughes G., Looseley M., Oxley S. J. P., Renwick A., Topp C. F. E., Newton A. C. 2012. Control of foliar diseases in barley: towards an integrated approach. Eur. J. Plant Pathol. 133: 33 — 73.
Google Scholar

Walters D. R., Ratsep J., Havis N. D. 2013. Controlling crop diseases using induced resistance: challenges for the future. J. Experimental Botany 64: 1263 — 1280.
Google Scholar

Walther U., Rapke H., Proeseler G., Szigat G. 2000. Hordeum bulbosum — a new source of disease resistance — transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed. 119: 215 — 218.
Google Scholar

Wang L., Wang Y., Wang Z., Marcel T.C., Niks R. E., Qi X. 2010. The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. Theor. Appl. Genet. 121: 857 — 864.
Google Scholar

Weerasena J. S., Steffenson B. J., Falk A. B. 2004. Conversion of an amplified fragment length polymorphism marker into a co-dominant marker in the mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor. Appl. Gen. 1084: 712 — 719.
Google Scholar

Weibull J., Walther U., Sato K., Habekuβ A., Kopahnke D., Proeseler G. 2003. Diversity in resistance to biotic stresses. In: von Bothmer R., Van Hintum Th., Knüpffer H., Sato K. Eds, Diversity in Barley Hordeum vulgare, Elsevier Science B.V., Amsterdam, The Netherlands: 143 — 178.
Google Scholar

Wendler N., Mascher M., Nöh C., Himmelbach A., Scholz U., Ruge-Wehling B., Stein N. 2014. Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnology Journal 12: 1122 — 1131.
Google Scholar

Wendler N., Mascher M., Himmelbach A., Johnston P., Pickering P., Stein N. 2015. Bulbosum to Go: A Toolbox to Utilize Hordeum vulgare/bulbosum Introgressions for Breeding and Beyond. Molecular Plant 8: 1507 — 1519.
Google Scholar

Woldeab G., Finisz C., Singh H., Yuen J. 2006. Virulence spectrum of Puccinia hordei in barley production systems in Ethiopia. Plant Pathol. 55: 351 — 357.
Google Scholar

Wulff B. B. H., Horvath D. M., Ward E. R. 2011. Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology 14: 468 — 476.
Google Scholar

Zhang L., Pickering R., Murray B. 1999. Direct measurement of recombination in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization. Heredity 83: 304 — 309.
Google Scholar

Zhang L., Pickering R. A., Murray B. G. 2001. A Hordeum vulgare  H. bulbosum tetraploid hybrid provides useful agronomic introgression lines for breeders. NZ J. Crop and Hort Sci. 29: 239 — 246.
Google Scholar

Zhang L., Murray B. G., Pickering R. A. 2002. Variable patterns of chromosome synapsis at pachytene in Hordeum vulgare  H. bulbosum hybrids and their parents. Hereditas 137: 90 — 95.
Google Scholar


Published
2017-09-05

Cited by

Czembor, J. H., Pietrusińska, A. and Piechota, U. (2017) “Hordeum bulbosum — as a source of effective resistance to barley leaf rust”, Bulletin of Plant Breeding and Acclimatization Institute, (281), pp. 47–58. doi: 10.37317/biul-2017-0005.

Authors

Jerzy H. Czembor 
j.h.czembor@ihar.edu.pl
Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie Poland

Authors

Aleksandra Pietrusińska 

Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie Poland

Authors

Urszula Piechota 

Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie Poland

Statistics

Abstract views: 161
PDF downloads: 87


License

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

<< < 1 2 3