Molecular strategies in modern plant breeding

Weronika Jarska


Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików (Poland)

Agnieszka Niedziela

a.niedziela@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików (Poland)

Renata Orłowska


Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików (Poland)

Piotr T. Bednarek


Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików (Poland)

Abstract

Advances in molecular biology, including the new marker technologies and statistical tools allow analysis of large data sets evaluated for different types of mapping populations and change approaches to selection of breeding materials. The emphasis is put on selecting many traits simultaneously based on elite, usually non-related but genetically uniform, plant materials. Currently available methods for selecting forms via DNA-based marker technologies using complex mapping populations are well known to a limited number of specialists whilst applications involving defined mendelian populations (due to their numerous limitations) are being neglected. Thus, the review is dedicated to describing wide range of selection approaches that could be applied to different breeding programs depending on experimental requirements.


Keywords:

association mapping, genetic mapping, genomic selection

Alheit K. V., Reif J. C., Maurer H. P., Hahn V., Weissmann E.A., Miedaner T., Würschum T. 2011. Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high density DArT marker consensus genetic linkage map. BMC Genomics 12: 380.
Google Scholar

Bar-Hen A., Charcosset A., Bourgoin M., Guiard J. 1995. Relationship between genetic markers and morphological traits in a maize inbred line collection. Euphytica 84, 2: 145 — 154.
Google Scholar

Beer S., Siripoonwiwat W., O’Donoughue L., Souza E., Mathews D., Sorrels M. 1997. Associations between molecular markers and quantitative traits in oat germplasm pool: can we infer linkages? J. Agric. Genom. 3 http://wheat.pw.usda.gov/jag/papers97/paper197/jqt.
Google Scholar

Boopathi M. N., 2013. Genetic mapping and marker assisted selection: basics, practice and benefits. Published by Springer India: 23–37 pp., 117 — 163 pp.
Google Scholar

Börner A., Korzun V. 1998. A consensus linkage map of rye (Secale cereale L.) including 374 RFLPs, 24 isozymes and 15 gene loci. Theor. Appl. Genet. 97, 8: 1279 — 1288.
Google Scholar

Broman K. W. 2001. Review of statistical methods for QTL mapping in experimental crosses. Lab Animal. 30, 7: 44 — 52.
Google Scholar

Carling J., Heller-Uszyńska K., Jaccoud D., Machado A., Hopper C., Xia L., Vippin C., Caig V., Uszyński G., Kilian A. 2015. DArTTM and DArTseqTM genome profiling for breeding, pre-breeding and population genetics applications. Contribution P0052, XXIII Plant and Animal Genome, San Diego, CA 10 — 14.
Google Scholar

Cavanagh C., Morell M., Mackay I., Powell W. 2008. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Cur. Opin. Plant Biol. 11: 215 — 221.
Google Scholar

Chankaew S., Isemura T., Naito K., Ogiso-Tanaka E., Tomooka N., Somta P., Kaga A., Vaughan D. A., Srinives P. 2014. QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theor. Appl. Genet. 127, 3: 691 — 702.
Google Scholar

Elshire R. J., Glaubitz J. C., Sun Q., Poland J. A., Kawamoto K., Buckler E. S., Mitchell S. E. 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6, 5: e19379.
Google Scholar

Gale M. D., Atkinson M. D., Chinoy C. N., Harcourt R. L., Jia J., Li Q. Y., Devos K. M. 1995. Genetic maps of hexaploid wheat. In Proc 8th Int. Wheat Genet Symp. China Agricultural Scientech Press, Beijing (pp. 29 — 40).
Google Scholar

Habier D., Fernando R. L., Garrick D. J. 2013. Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 194: 597 — 607.
Google Scholar

Haley C. S., Knot S. A. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315 — 324.
Google Scholar

Hall D., Tegströmand C., Ingvarsson P. K. 2010. Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics 9, 2: 157 — 165.
Google Scholar

Hamblin M. T., Buckler E. S., Jannink J. L. 2011. Population genetics of genomics-based crop improvement methods. Trends Genet. 27, 3: 98 — 106.
Google Scholar

Heffner E. L., Sorrells M. E., Jannink J.-L. 2009. Genomic selection for crop improvement. Crop Sci. 49: 1 — 12.
Google Scholar

Hospital F. 2005. Selection in backcross programmes. Phil. Trans. R. Soc. B. 360: 1503 — 1511.
Google Scholar

Jansen R. C. 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205 — 211.
Google Scholar

Jonas E., de Koning D.-J. 2013 Does genomic selection have a future in plant breeding?, Trends Biotechnol. 31, 9: 497 — 504.
Google Scholar

Kao C.-H., Zeng Z.-B., Teasdale R. D. 1999. Multiple Interval Mapping for Quantitative Trait Loci. Genetics. 152, 3: 1203 — 1216.
Google Scholar

Kearsey M. J., Farquhar A. G. L. 1998. QTL analysis; where are we now? Heredity 80, 2: 137 — 142.
Google Scholar

Kennard W., Phillips R., Porter R., Grombacher A., Phillips R. L. 1999. A comparative map of wild rice (Zizania palustris L. 2n=2x=30). Theor Appl Genet. 99: 5: 793 — 799.
Google Scholar

Lander E. S., Botstein D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 1: 185 — 199.
Google Scholar

Langridge P., Karakousis A., Collins N., Kretschmer J., Manning S. 1995. A consensus linkage map of barley. Mol Breed. 1: 389 — 395.
Google Scholar

Mansur L. M., Lark K. G., Kross H., Oliveira A. 1993. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor. Appl. Genet. 86, 8: 907 — 913.
Google Scholar

Mauricio R. 2001. Mapping Quantitative Trait loci in plants: uses and caveats for evolutionary biology. Nature 2: 370 — 380.
Google Scholar

McMullen M. D., Louie R. 1989. The linkage of molecular markers to a gene controlling the symptom response in maize to maize dwarf mosaic virus. Mol Plant Microbe Interact. 2: 309 — 314.
Google Scholar

Meuwissen T. H. E., Hayes B. J., Goddard M. E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819 — 1829.
Google Scholar

Milczarski P., Bolibok-Brągoszewska H., Myśków B., Stojałowski S., Heller-Uszyńska K., Góralska M., Brągoszewski P., Uszyński G., Kilian A., Rakoczy-Trojanowska M. 2011. A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS ONE 6:12: e28495.
Google Scholar

Mitchell-Olds T. 1995. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics. 140, 3: 1105 — 1109.
Google Scholar

Nakaya A., Isobe S. N. 2012. Will genomic selection be a practical method for plant breeding? Ann Bot. 110: 1303 — 1316.
Google Scholar

Pereira M. G., Lee M. 1995. Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet. 90, 3-4: 380 — 388.
Google Scholar

Pritchard J. 2001. Deconstructing maize population structure. Nat Genet. 28 (3): 203 — 204.
Google Scholar

Pritchard J. K., Stephens M, Rosenberg N.A., Donnelly P. 2000. Association mapping in structured populations. Am J Hum Genet. 67: 170 — 181.
Google Scholar

Qi Z., Han X., Hou M., Xin D., Wang Z., Zhu R., Hu Z., Jiang H., Li C., Liu C., Hu G., Chen Q. 2014. QTL analysis of soybean oil content under 17 environments. Can. J. Plant Sci. 94: 245 — 261.
Google Scholar

Rafalski J. A. 2010. Association genetics in crop improvement. Current Opinion in Plant Biology 13, 2: 174 — 180.
Google Scholar

Sax K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552 — 560.
Google Scholar

Semagn K., Bjørnstad Å., Ndjiondjop M. N. 2006. An overview of molecular marker methods for plants. Afr. J. Biotechnol. 5, 25: 2540 — 2568.
Google Scholar

Semagn K., Bjørnstad A., Xu Y. 2010. The genetic dissection of quantitative traits in crops. Electron J Biotechnol. 13: 5, http://dx.doi.org/10.2225/vol13-issue5-fulltext-14.
Google Scholar

Soto-Cerda B. J., Cloutier S. 2012. Genetic Diversity in Plants. Association mapping in plant genomes. Red. Çalişkan M., http://www.intechopen.com/books/genetic-diversity-in-plants/association-mapping-in-plant-genomes, pp. 29 — 54.
Google Scholar

Thomson M. J., Tai T. H., McClung A. M., Lai X-H., Hinga M. E., Lobos K. B., Xu Y., Martinez C. P., McCouch S. R. 2003. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 107, 3: 479 — 93.
Google Scholar

Virk P., Ford-Lloyd B., Jackson M., Pooni H., Clemeno T., Newbury H. 1996. Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76, 3: 296 — 304.
Google Scholar

Xu Y., Crouch J. H. 2008. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 48: 391 — 407.
Google Scholar

Yap I. V., Schneider D., Kleinberg J., Matthews D., Cartinhour S., McCouch S. R. 2003. A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 165: 2235 — 2247.
Google Scholar

Young N. D., Zamir D., Ganal M. W., Tanksley S. D. 1988. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120: 579 — 585.
Google Scholar

Yu J., Holland J. B., McMullen M. D., Buckler E. S. 2008. Genetic design and statistical power of nested association mapping in maize. Genetics 178: 539 — 551.
Google Scholar

Zeng A., Chen P., Shi A., Wang D., Zhang B., Orazaly M., Florez-Palacios L., Brye K., Song Q., Cregan P. 2014. Identification of quantitative trait loci for sucrose content in soybean seed. Crop Sci. 54, 2: 554 — 564.
Google Scholar

Zeng Z.-B. 1993. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Natl. Acad. Sci. 90: 10972 — 10976.
Google Scholar

Zeng Z.-B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457 — 1468.
Google Scholar


Published
2015-03-31

Cited by

Jarska, W. (2015) “Molecular strategies in modern plant breeding”, Bulletin of Plant Breeding and Acclimatization Institute, (275), pp. 17–28. doi: 10.37317/biul-2015-0026.

Authors

Weronika Jarska 

Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Poland

Authors

Agnieszka Niedziela 
a.niedziela@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Poland

Authors

Renata Orłowska 

Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Poland

Authors

Piotr T. Bednarek 

Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Poland

Statistics

Abstract views: 176
PDF downloads: 75


License

Copyright (c) 2015 Weronika Jarska, Agnieszka Niedziela, Renata Orłowska, Piotr T. Bednarek

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)