Modern phenotypes of cereals for growing in areas endangered with drought

Krystyna Rybka

k.rybka@ihar.edu.pl
Zakład Biochemii i Fizjologii Roślin, Instytut Hodowli i Aklimatyzacji Roślin IHAR — PIB, Radzików (Poland)

Zygmunt Nita


Hodowla Roślin Strzelce Sp. z o.o. Grupa IHAR (Poland)

Abstract

The increasing food demand and economic conditions force constant increase of crop yield. Green revolution introduced dwarf forms and for five decades determined mechanisms of yield growth by increasing harvest index (HI) which, combined with advances in agricultural practices, resulted in wheat grain yield greater than 10 t/ha. The optimal HI level was reached (≈ 0.64 for wheat) thus exhausting yield potential related to this parameter. This initiated a search for new crop phenotypes which would guarantee continuing yield increase in the future decades in the prospect of increasing soil drought. In this article, the results of wheat ideotypes simulation generated by mechanistic Sirius model enhanced by evolutionary algorithm (GA-SA) and climate scenarios (HadCM3) are presented. They are discussed in the context of selection priorities in crop breeding in Poland. The biochemical and physiological factors determining plant drought resistance and efficient water use by cereal crops are also presented.

Supporting Agencies

The work was carried out as part of the NCN grant #304267540

Keywords:

breeding, phenomics, Triticum aestivum, wheat, yield

Anioł A. 2010. Wpływ biotechnologii i procesów globalizacji w gospodarce na hodowlę roślin i wspierające ten sektor badania naukowe. Biul. IHAR 256: 3 — 13.
Google Scholar

Anonim. 2014. Crop Modeling Team Highlights web-page www.agmip.org/wp-content/uploads/2012/11/Crop_Modeling_2011-2012_Highlights-web.pdf data ostatniej modyfikacji: 16 05 2014 05:53:53, data dostępu: 29 09 2014.
Google Scholar

Amani I., Fischer R. A., Reynolds M. P. 1996. Canopy Temperature Depression Association with Yield of Irrigated Spring Wheat Cultivars in a Hot Climate. J. Agron. Crop. Sci. 176: 119 — 129.
Google Scholar

Akkaya A., Dokuyucu T., Kara R., Akcura. M. 2006. Harmonization ratio of post- to pre-anthesis durations by thermal times for durum wheat cultivars in a Mediterranean environment. Eur. J. Agron. 24: 404 — 408.
Google Scholar

Araus J. L., Cairns J. E. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19: 52 — 61.
Google Scholar

Atkin O. K., Macherel D. 2009. The crucial role of plant mitochondria in orchestrating drought tolerance. Ann. Bot. 103: 58 — 597.
Google Scholar

Austin R. B. 1999. Yield of wheat in the United Kingdom: recent advances and prospects. Crop Sci. 39: 1604 — 1610.
Google Scholar

Bacławska-Krzemińska Z. 1973. Influence of light, water deficit and age of plant on photosynthesis and air passage capacity in leaves of Brassica oleracea L. var. capitata alba v. Ditmarska. Plant Breed. Seed Sci. 17: 303 — 328.
Google Scholar

Blum A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res. 112: 119 — 123.
Google Scholar

Borlaug N. 2007. Sixty-two years of fighting hunger: personal recollections. Euphytica 157: 287 — 297.
Google Scholar

Brooks R. J., Semenov M. A., Jamieson P. D. 2001. Simplifying Sirius: Sensitivity analysis and development of a meta-model for wheat yield prediction. Eur. J. Agron. 14: 43 — 60.
Google Scholar

Cabrera-Bosquet L., Crossa J., von Zitzewitz J., Serret M. D., Araus L. J. 2012. High-throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding Converge. J. Integr. Plant Biol.54: 312 — 320.
Google Scholar

Caramelo J. J., Iusem N. D. 2009. When cells lose water: Lessons from biophysics and molecular biology. Prog. Biophys. Mol. Bio. 99: 1 — 6.
Google Scholar

Condon A. G., Richards R. A., Rebetzke G. J., Farquhar G. D. 2004. Breeding for high water-use efficiency. J. Exp. Bot. 55: 2447 — 2460.
Google Scholar

Costa J. M., Grant O. M., Chaves M. M. 2013. Thermography to explore plant environment interactions. J. Exp. Bot. 64: 3937 — 3949.
Google Scholar

Craufurd P. Q., Vadz V., Jagadish S. V. K., Prasad P. V. V., Zaman-Allah M. 2013. Crop science experiments designed to inform crop modelling. Agric. For. Meteorol. 170: 8 — 18.
Google Scholar

Cutler S. R., Rodriguez P. L., Finkelstein R. R., Abrams S. R. 2010. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61: 651 — 679.
Google Scholar

Doroszewski, A., Jadczyszyn, J., Kozyra, J., Pudełko, R., Stuczyński, T., Mizak, K., Łopatka, A., Koza, P., Górski, T., Wróblewska, E. 2012. Podstawy systemu monitoringu suszy rolniczej. Woda-Środowisko-Obszary Wiejskie 12: 77 — 91.
Google Scholar

Driever S. M., Lawson T., Andralojc P. J., Raines C. A., Parry M. A. J. 2014. Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. J. Exp. Bot. 65: 4959 — 4973.
Google Scholar

Du T., Kang S., Sun J., Zhang X., Zhang J. 2009. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agr. Water Manage. 97: 66 — 74.
Google Scholar

Easterling D. R., Evans J. L., Groisman P. Y., Karl T. R., Kunkel K. E., Ambenje P. 2000. Observed variability and trends in extreme climate events: a brief review. Bull. Am. Meteorol. Soc. 81: 417 — 425.
Google Scholar

Easterling D. R., Horton B., Jones P. D., Peterson T. C., Karl T. R., Parker D. E., Salinger M. J., Razuvayev V., Plummer N., Jamason P., Folland C. K. 1997. Maximum and Minimum Temperature Trends for the Globe. Science 277: 364 — 367.
Google Scholar

Eyal Z., Blum A. 1989. Canopy temperature as a correlative measure for assessing host response to Septoria tritici Bloch of Wheat. Plant Dis. 73: 468 — 471.
Google Scholar

FAO, Food and Agriculture Organization, 2003. Review of World Water Resources by Country. Water Reports, FAO, Rome, 23: 127 ss.
Google Scholar

Feng B., Yu H., Hu Y., Gao X., Gao J., Gao D., Zhang S. 2009. The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiol. Plant. 31: 1229 — 1235.
Google Scholar

Fish D. A., Earl H. J. 2009. Water-Use Efficiency is negatively correlated with leaf epidermal conductance in cotton (Gossypium spp.). Crop Sci. 49: 1409 — 1415.
Google Scholar

Fleury D., Jefferies S., Kuchel H., Langridge P. 2010. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 61: 3211 — 3222.
Google Scholar

Foulkes M. J., Slafer G. A., Davies W. J., Berry P. M., Sylvester-Bradley R., Martre P., Calderini D. F., Griffiths S., Reynolds M. P. 2011. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 62: 469 — 486.
Google Scholar

Foyer C., Noctor G. 2009. Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications. Antioxidants & Redox Signaling 11: 861 — 905.
Google Scholar

Gago J., Douthe C., Florez-Sarasa I., Escalona J. M., Galmes J., Fernie A. R., Flexas J., Medrano H. 2014. Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci. (w druku) doi: 10.1016/j.plantsci.2014.1004.1007.
Google Scholar

Gassman P. W., Williams J. R., Benson V. W., Izaurralde R. C., Hauck L. M., Jones C. A., Atwood J. D., Kiniry J. R., Flowers J. D. 2004. Historical Development and Applications of the EPIC and APEX Models ASAE/CSAE Annual International Meeting, Meeting Paper No. 042097 Ottawa, Canada. Iowa State University Working Paper 05-WP 397, June 2005.
Google Scholar

Gosal S. S., Wani S. H., Kang M. S. 2009. Biotechnology and drought tolerance. J. Crop Improv. 23: 19 — 54.
Google Scholar

Grudkowska M., Zagdańska B. 2004. Multifunctional role of plant cysteine proteinases. Acta Biochim. Pol. 51: 609 — 624.
Google Scholar

GUS 2013. Produkcja Upraw Rolniczych i Ogrodniczych w 2012 r. Materiały źródłowe. ISSN 1509 - 7099 pp. 124
Google Scholar

Hammer G., Chapman S., Oosterom E., Podlich D. 2004. Trait physiology and crop modelling to link phenotypic complexity to underlying genetic systems. Aust. J. Agric. Res. 56: 947 — 960.
Google Scholar

Hammer G. L., van Oosterom E., McLean G., Chapman S. C., Broad I., Harland P., Muchow R. C. 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 61: 2185 — 2202.
Google Scholar

Harb A., Krishnan A., Ambavaram M. M. R., Pereira A. 2010. Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth. Plant Physiol. 154: 1254 — 1271.
Google Scholar

He J., Le Gouis J., Stratonovitch P., Allard V., Gaju O., Heumez E., Orford S., Griffiths S., Snape J. W., Foulkes M. J., Semenov M. A., Martre P. 2012. Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat. Eur. J. Agron. 42: 22 — 33.
Google Scholar

Hiscock K. M., Rivett M. O., Davison R. M. 2002. Sustainable groundwater development. Geological Society, London, Special Publications 193: 1 — 14.
Google Scholar

Houle D., Govindaraju D. R., Omholt S. 2010. Phenomics: the next challenge. Nat. Rev. Genet. 11: 855 — 865.
Google Scholar

Hu H., Xiong L. 2014. Genetic Engineering and Breeding of Drought-Resistant Crops. Ann. Rev. Plant Biol. 65: 715 — 741.
Google Scholar

Hussain S. S., Iqbal M. T., Arif M. A., Amjad M. 2012. Beyond osmolytes and transcription factors: drought tolerance in plants via protective proteins and aquaporins. Biol. Plant. 55: 40 — 413.
Google Scholar

Iturriaga G., Suárez R., Nova-Franco B. 2009. Trehalose metabolism: from osmoprotection to signaling. Int. J. Mol. Sci. 10: 3793 — 3810.
Google Scholar

Jaggard K. W., Qi A., Ober E. S. 2010. Possible changes to arable crop yields by 2050. Philos. T. Roy. Soc. B. 365: 2835 — 2851.
Google Scholar

Jaleel C. A., P. Manivannan A. W., M. Farooq, R. Somasundaram, Panneerselvam R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11: 100 — 105.
Google Scholar

Jamieson P. D., Semenov M., Brooking I., Fracois G. 1998. Sirius: a mechanistic model of wheat response to environmental variation. Eur. J. Agron. 8: 161 — 179.
Google Scholar

Jarecka M. 1973. Influence of light, water deficit and age of plant on photosynthesis and air passage capacity in leaves of sugar beet (Beta vulgaris var. Saccharifera). Plant Breed. Seed Sci. 17: 329 — 357.
Google Scholar

Jogaiah S., Govind S. R., Tran L. S. P. 2013. Systems biology-based approaches toward understanding drought tolerance in food crops. C. R. Biotechn. 33: 23 — 39.
Google Scholar

Kacperska A. 2002 a. Gospodarka wodna. W: Kopcewicz J., Lewak S. (red.) Fizjologia roślin. Warszawa: PWN: 193 — 245.
Google Scholar

Kacperska A. 2002 b. Reakcje roślin na abiotyczne czynniki stresowe. W: Kopcewicz J., Lewak S. (red.) Fizjologia roślin. Warszawa: PWN: 612 — 678.
Google Scholar

Kemanian A. R., Stöckle C. O., Huggins D. R. 2005. Transpiration-use efficiency of barley. Agr. Forest Meteorol. 130: 1 — 11.
Google Scholar

Khattak G. S. S., Parry M. A. J., Andralojc J., Saeed I., Shams Ur R. 2014. Evaluation of diverse wheat genotypes for potential biomass production through physiological parameters at seedling stage under controlled environment. Pakistan J. Bot. 46: 181 — 184.
Google Scholar

Kholova J., Hash C. T. , Kakkera A., Kocova M., Vadez V. 2010. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet (Pennisetum glaucum L). J. Exp. Bot. 61: 369 — 377.
Google Scholar

Kholova J., McLean G., Vadez V., Craufurd P., Hammer G. L. 2013. Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crops Res. 141: 38 — 46.
Google Scholar

Kim T.-H., Bohmer M., Hu H., Nishimura N., Schroeder J. I. 2010. Guard cell signal transduction network: Advances in understanding Abscisic Acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61: 561 — 591.
Google Scholar

Knight S., Kightley S., Bingham I., Hoad S., Lang B., Philpott H., Stobart R., Thomas J., Barnes A., Ball B. 2012. Desk study to evaluate contributory causes of the current ‘yield plateau’ in wheat and oilseed rape. HGCA Report No 502: pp. 225.
Google Scholar

Koza J. R., Keane M. A., Streeter M. J. 2003. Zastosowanie mechanizmów ewolucji w programowaniu komputerowym daje nowatorskie rezultaty. Świat Nauki 4(140): 40 — 47.
Google Scholar

Labudda M., Azam F. M. S. 2014. Glutathione-dependent responses of plants to drought: a review. Acta Soc. Bot. Pol. 83: 3 — 12.
Google Scholar

Langridge P., Paltridge N., Fincher G. 2006. Functional genomics of abiotic stress tolerance in cereals. Brief Funct. Genomic Proteomic 4: 343 — 354.
Google Scholar

Lipiec J., Doussan C., Nosalewicz A., Kondracka K. 2013. Effect of drought and heat stresses on plant growth and yield: a review. Intern. Agroph. 27: 463 — 477.
Google Scholar

Liu Z.-Y., Wu H.-F., Huang J.-F. 2010. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Comput. Electron. Agr. 72: 99 — 106.
Google Scholar

Łabędzki L. 2006. Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji. Woda-Środowisko-Obszary Wiejskie Rozprawy naukowe i monografie nr 17.
Google Scholar

Manschadi A. M., Christopher J., Devoil P., Hammer G. L. 2006. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct. Plant Biol. 33: 823 — 837.
Google Scholar

Maseda P. H., Ferniez R. J. 2006. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 57: 3963 — 3977.
Google Scholar

McMaster G. S. 2005. Phytomers, phyllochrons, phenology and temperate cereal development. J. Agr. Sci. 143: 137 — 150.
Google Scholar

Meehl G. A., Covey C., Delworth T., Latif M., McAvaney B., Mitchell J. F. B. i in. 2007. The WCRP CMIP3 multimodel dataset — a new era in climate change research. Bull. Am. Meteorol. Soc. 88: 1383 — 1394.
Google Scholar

Miazek A., Zagdańska B. 2008. Involvement of exopeptidases in dehydration tolerance of spring wheat seedlings. Biol. Plantarum 52: 687 — 694.
Google Scholar

Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33: 453 — 467.
Google Scholar

Miyazono K., Miyakawa T., Sawano Y., Kubota K., Kang H., Asano A., Miyauchi Y., Takahashi M., Zhi Y., Fujita Y., Yoshida T., Kodaira K., Yamaguchi-Shinozaki K., Tanokura M. 2009. Structural basis of abscisic acid signalling. Nature 462: 609 — 614.
Google Scholar

Oleksiak T. 2013. Stosowanie kwalifikowanego materiału siewnego a plonowanie zbóż ozimych. Biul. IHAR 268: 87 — 99.
Google Scholar

Pinheiro C., Chaves M. M. 2011. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 62: 869 — 882.
Google Scholar

Pinter Jr P. J., Zipoli G., Reginato R. J., Jackson R. D., Idso S. B., Hohman J. P. 1990. Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric. Water Manage. 18: 35 — 48.
Google Scholar

Reynolds M., Tuberosa R. 2008. Translational research impacting on crop productivity in drought-prone environments. Curr. Opin. Plant Biol. 11: 171 — 179.
Google Scholar

Richards R. A. 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric. Water Manag. 80:197 — 211.
Google Scholar

Richards R. A., Rebetzke G. J., Watt M., Condon A. G., Spielmeyer W., Dolferus R. 2010. Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct. Plant Biol. 37: 85 — 97.
Google Scholar

Ritchie J. T., Singh U., Godwin D. C., Bowen W. T. 1998. Soil Water Balance and Plant Water Stress. W: Tsuji Y, Tsuji GY, Hoogenboom G, Thornton PK (ed.) Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, 83 — 102.
Google Scholar

Rosenzweig C., Elliott J., Deryng D., Ruane A. C., Müller C., Arneth A., Boote K. J., Folberth C., Glotter M., Khabarov N., Neumann K., Piontek F., Pugh T., Schmid E., Stehfest E., Yang H., Jones J. W. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Nat. Acad. Sci. USA 111: 3268 — 3273.
Google Scholar

Rosenzweig C., Jones J. W., Hatfield J. L., Ruane A. C., Boote K. J., Thorburn P., Antle J. M., Nelson G. C., Porter C., Janssen S., Asseng S., Basso B., Ewert F., Wallach D., Baigorria G., Winter J. M. 2013. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 170: 166 — 182.
Google Scholar

Rybka K. 2009. TILLING i FOX-hunting: nowe metody analizy funkcjonalnej genów Post. Biol. Kom. 36: 539 — 554.
Google Scholar

Rybka K. 2011. Tilling and fox-hunting: new methods for functional analysis of genes. Adv. Cell Biol. 3(1): 165 — 180.
Google Scholar

Rybka K., Nita Z. 2014. Physiological requirements for wheat ideotypes in response to drought threat. Acta Physiol. Plant. (ACPP-D-14-00754).
Google Scholar

Science.gov [on line] U.S. Federal Science [dostęp 09.05.2014]. Dostępne w internecine „yield prediction model“ http://www.science.gov/scigov/result-list/fullRecord:yield+ prediction+model/
Google Scholar

Semenov M. A. 2009. Impacts of climate change on wheat in England and Wales. J. R. Soc. Interface 6: 343 — 350.
Google Scholar

Semenov M. A., Stratonovitch P. 2013. Designing high-yielding wheat ideotypes for a changing climate. Food and Energy Security 2: 185 — 196.
Google Scholar

Semenov M. A., Stratonovitch P., Alghabari F., Gooding M. J. 2014. Adapting wheat in Europe for climate change. J. Cereal Sci. 59: 245 — 256.
Google Scholar

Shao H.-B., Chu L.-Y., Jaleel C. A., Manivannan P., Panneerselvam R., Shao M.-A. 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. C. R. Biotechnol. 29: 131 — 151.
Google Scholar

Shao H.-B., Chu L.-Y., Jaleel C.A., Zhao C.-X. 2008. Water-deficit stress-induced anatomical changes in higher plants. C. R. Biol. 331: 215 — 225.
Google Scholar

Shinozaki K., Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221 — 227.
Google Scholar

Sillmann J., Roeckner E. 2008. Indices for extreme events in projections of anthropogenic climate change. Clim. Change 86: 83 — 104.
Google Scholar

Skirycz A., De Bodt S., Obata T., De Clercq I., Claeys H., De Rycke R., Iriankaja M., Van Aken O., Van Breusegem F., Fernie A. R., Inze D. 2010. Developmental stage specificity and the role of mitochondrial metabolism in the response of arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol. 152: 226 — 244.
Google Scholar

Skośkiewicz K. 1973. Stomatal movements in summer rape Bronowski IHAR (Brassica napus L..) in dependence on the age of the leaf, water deficit, light intensity and CO2 concentration. Plant Breed. Seed Sci. 17: 359 — 385.
Google Scholar

Somvanshi V. S. 2009. Patenting drought tolerance in organisms. Recent Patents on DNA&Gene Sequences 3: 16 — 25.
Google Scholar

Spink J., Street P., Sylvester-Bradley R., Berry P. 2009. The potential to increase productivity of wheat and oilseed rape in the UK. Report to the Government Chief Scientific Adviser, Professor John Beddington, January 2009 see: http:// dius.gov.uk: data dostępu 10 05 2014.
Google Scholar

Stachowski P. 2010. Ocena suszy meteorologicznej na terenach pogórniczych w rejonie Konina. Rocznik Ochrona Środowiska 12: 587-606. ISSN 1506-218X. Dostępne: .http://old.ros.edu.pl/ text/pp_2010_034.pdf. Data dostępu: 19. 08. 2014.
Google Scholar

Starck Z. 2009. Dystrybucja asymilatów kluczowym procesem determinującym plon. Post. Nauk Roln. 2/2009: 51 — 69.
Google Scholar

Strebeyko P. 1973. Theoretical principles of gas exchange in plants. Plant Breed. Seed Sci. 17: 287 — 295.
Google Scholar

Tallec T., Béziat P., Jarosz N., Rivalland V., Ceschia E. 2013. Crops’ water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agric. Forest Meteorol. 168: 69 — 81.
Google Scholar

Tardieu F. 2010. Why work and discuss the basic principles of plant modelling 50 years after the first plant models? J. Exp. Bot. 61: 2039 — 2041.
Google Scholar

Tomassini L., Jacob D. 2009. Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. J. Geophys. Res.- Atmos. 114: D12113.
Google Scholar

Trenberth K. E., Dai A., Rasmussen R. M., Parsons D. B. 2003. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 84: 1205 — 1217.
Google Scholar

Vadez V., Kholova J., Medina S., Kakkera A., Anderberg H. 2014. Transpiration efficiency: new insights into an old story. J. Exp. Bot.: first published online March 5, 2014.
Google Scholar

Vadez V., Kholová J., Yadav R., Hash C. 2013 a. Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum L.) are critical for grain yield under terminal drought. Plant Soil 371: 447 — 462.
Google Scholar

Vadez V., Kholova J., Zaman-Allah M., Belko N. 2013 b. Water: the most important ‘molecular’ component of water stress tolerance research. Funct. Plant Biol. 40: 1310 — 1322.
Google Scholar

Vadez V., Rao S., Kholová J., Krishnamurthy L., Kashiwagi J., Ratnakumar P., Sharma K., Bhatnagar-Mathur P., Basu P. 2008. Root research for drought tolerance in legumes: Quo vadis? J. Food Legumes 21: 77 — 85.
Google Scholar

White J. W., Andrade-Sanchez P., Gore M. A., Bronson K. F., Coffelt T. A., Conley M. M., Feldmann K. A., French A. N., Heun J. T., Hunsaker D. J., Jenks M. A., Kimball B. A., Roth R. L., Strand R. J., Thorp K. R., Wall G. W., Wang G. 2012. Field-based phenomics for plant genetics research. Field Crop. Res. 133: 101 — 112.
Google Scholar

Yang W., Duan L., Chen G., Xiong L., Liu Q. 2013. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr. Opin. Plant Biol. 16: 180 — 187.
Google Scholar

Zagdańska B. 1997. Mechanizmy odporności zbóż na suszę glebową: metabolizm energetyczny pszenicy jarej w nabywaniu odporności. (in Polish with English Summary and Legends) Biul. IHAR 203: 41 — 55.
Google Scholar

Zagdańska B., Kozdój J. 1994. Water stress-induced changes in morphology and anatomy of flag leaf of spring wheat. Acta Soc. Bot. Pol. 63: 61 — 66.
Google Scholar

Zawora T., Ziernicka-Wojtaszek A. 2008. Ekstremalne wartości niedoborów i nadmiarów opadów atmosferycznych w aspekcie współczesnych zmian klimatu na przykładzie województwa podkarpackiego. Infrastruktura i Ekologia Terenów Wiejskich 5: 23 — 29.
Google Scholar

Zhang J., Dell B., Conocono E., Waters I., Setter T., Appels R. 2009. Water deficits in wheat: fructan exohydrolase (1-FEH)mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytol. 181: 843 — 850.
Google Scholar

Zhou J., Wang J., Li X., Xia X.-J., Zhou Y.-H., Shi K., Chen Z., Yu J.-Q. 2014. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J. Exp. Bot. (w druku, doi: 10.1093/jxb/eru217).
Google Scholar

Żurek G. 2000. Effect of summer 1999 drought on several turf grass species. Plant Breed. Seed Sci. 44 (1): 73 — 83.
Google Scholar

Żurek G. 2004. Reakcja wybranych odmian traw gazonowych na naturalną i symulowaną suszę. Biul. IHAR 233: 195 — 209.
Google Scholar


Published
2014-09-30

Cited by

Rybka, K. and Nita, Z. (2014) “Modern phenotypes of cereals for growing in areas endangered with drought ”, Bulletin of Plant Breeding and Acclimatization Institute, (273), pp. 55–72. doi: 10.37317/biul-2014-0018.

Authors

Krystyna Rybka 
k.rybka@ihar.edu.pl
Zakład Biochemii i Fizjologii Roślin, Instytut Hodowli i Aklimatyzacji Roślin IHAR — PIB, Radzików Poland

Authors

Zygmunt Nita 

Hodowla Roślin Strzelce Sp. z o.o. Grupa IHAR Poland

Statistics

Abstract views: 118
PDF downloads: 61


License

Copyright (c) 2014 Krystyna Rybka, Zygmunt Nita

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)