New sources of resistance to net blotch (Pyrenophora teres f. sp. teres) in collection of barley landraces
Olga Doraczyńska
o.doraczynska@ihar.edu.plPracownia Genetyki Stosowanej, Instytut Hodowli i Aklimatyzacji Roślin — PIB w Radzikowie (Poland)
Jerzy H. Czembor
Pracownia Genetyki Stosowanej, Instytut Hodowli i Aklimatyzacji Roślin — PIB w Radzikowie (Poland)
Henryk J. Czembor
Pracownia Genetyki Stosowanej, Instytut Hodowli i Aklimatyzacji Roślin — PIB w Radzikowie (Poland)
Marja Jalli
MTT Agrifood Research Finland, Plant Protection, FI-31600 Jokioinen, Finlandia (Finland)
Abstract
Barley is one of the economically important crop species and net blotch caused by Pyrenophora teres f. sp. teres has a significant impact on the quantity and quality of grain yield. Therefore the aim of the current study was identify sources of resistance to barley net blotch in the collection of landraces. The resistance was assessed after inoculation using isolates with different spectrum of virulence and avirulence, in relation to differential set of genotypes with known level of resistance. The study was carried out under controlled conditions — as detached-leaf test (scale ratings: 1–4) and in a greenhouse and field (scale ratings: 1–10). In the first stage of the study the virulence of 32 isolates was characterized. They were isolated from leaf samples collected in different regions of Poland and for further work 15 isolates were chosen. As a plant material 34 local varieties originating from Egypt, Nepal, Jordan, Turkey, Portugal and Greece were used. Their levels of resistance to specific isolates were evaluated on detached-leaf fragments and then under greenhouse and field conditions using mixture of all Polish isolates and one isolate, representing Finnish P. teres f. sp. teres population. Based on the obtained results it was found, that one landrace originating from Turkey and one landrace originating from Jordan are especially valuable sources of resistance to net blotch of barley (resistance level higher than resistant control cultivar CI9819). Three landraces from Nepal can be also used as sources of resistance. Their levels of resistance were assessed at the level of cultivar CI9819.
Supporting Agencies
Keywords:
barley, landraces, net blotch, Pyrenophora teres f. sp. teresReferences
Afanasenko O. S., Kushnierenko I. Yu. 1989. Inheritance of resistance to the causative agent of net blotch in some barley varieties. Genetika 25: 1194 — 2000.
Google Scholar
Afanasenko O. S., Hartleb H., Guseva N. N., Minarikova V., Janosheva M. 1995. A set of differentials to characterize populations of Pyrenophora teres Drechs. for international use. Journal of Phytopathol. 143: 501 — 507.
Google Scholar
Afanasenko O., Mironenko N., Filatova O., Kopahnke D., Krämer I., Ordon F. 2007. Genetics of host-pathogen interactions in the Pyrenophora teres f. sp. teres (net form) barley (Hordeum vulgare) pathosystem. European Journal of Plant Pathology 117: 267 — 280.
Google Scholar
Afanasenko O. S., Jalli M., Pinnschmidt H. O., Filatova O., Platz G. J. 2009. Development of an international standard set of barley differential genotypes for Pyrenophora teres f. sp. teres. Plant Pathology 58: 665 — 676.
Google Scholar
Arabi, M.I., Barrault G., Serrafi A., Albertini L. 1990. Inheritance of partial resistance to net blotch in barley. Plant Breed 105: 150 — 155.
Google Scholar
Berg C. G. J., Rossnagel B. G. 1991. Epidemiology of spot-type net blotch on spring barley in Saskatchewan. Phytopathol 81: 1446 — 1452.
Google Scholar
Bockelman H.E., Sharp E. L., Bjarko M.E. 1983. Isolates of Pyrenophora teres from Montana and Mediterranean regions that produce spot-type lesions on barley. Plant Disease 67: 696 — 697.
Google Scholar
Bockelman H. E., Sharp E. L., Eslick R. F. 1977. Trisomic analysis of genes for resistance to scald and net blotch in several barley cultivars. Can. J. Bot. 55: 2142 — 2148.
Google Scholar
Brandl F., Hoffman G. M. 1991. Differentiation of physiological races of D. teres (Sac.) Schoem. Pathogen of net blotch of barley. J. Plant Disease and Plant Prot 98: 47 — 66.
Google Scholar
Czembor H. J. 1972. Badania odporności odmian jęczmienia na plamistość siatkową powodowaną przez Pyrenophora teres (Died./Drechsl.) stad. konid. (Helminthosporium teres Sacc.). Biul. IHAR (3/4): 41 — 50.
Google Scholar
Gacek E. 1979. Studies on resistance of barley to net blotch caused by Pyrenophora teres (Died.) Drechsl. Hod. Rośl. Aklim i Nasien. 23:73 — 83.
Google Scholar
Grewal T.S., Rossnagel B. G., Pozniak C. J., Scoles G. J. 2008. Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116: 529 — 539.
Google Scholar
Harrabi M., Cherif M., Slama O. 1993. Evidence for race non-specific resistance and transgressive segregation to net blotch in barley. W: Th. Jacobs, J. E. Parlevliet (eds.) Durability of Disease resistance, Kluwer Acad Publishers: 231 — 234.
Google Scholar
Jones E. R. L., Clifford B. C. 1995. Net blotch of barley. UK Cereal Pathogen Virulence Survey, 1994 Annual Report: 61 — 66.
Google Scholar
Jonsson R., Bryngelsson T., Gustafsson M. 1997. Virulence studies of Swedish net blotch isolates (Drechslera teres) and identification of resistant barley lines. Euphytica 94: 209 — 218.
Google Scholar
Karki C. B., Sharp E.L. 1986. Pathogenic variation in some isolates of Pyrenophora teres f. sp. maculata on barley. Plant Dis. 70: 684 — 687.
Google Scholar
Khan T. N. 1982. Changes in pathogenicity of Drechslera teres relating to changes in barley cultivars grown in Western Australia. Plant Disease 66: 655 — 656.
Google Scholar
König J., Perovic D., Kopahnke D., Ordon F. 2013. Development of an efficient method for assessing resistance to the net type of net blotch (Pyrenophora teres f. sp. teres) in winter barley and mapping of quantitative trait loci for resistance. Mol. Breed. 32: 641 — 650.
Google Scholar
Legge W. G., Metcalfe D. R., Chiko A. M., Martens J. W., Tekauz A. 1996. Reaction of Turkish barley accessions to canadian barley pathogens. Can. J. Plant Sci. 76: 927 — 931.
Google Scholar
Lu S., Edwards M. C., Friesen T. L. 2013. Genetic variation of single nucleotide polymorphisms identified at the mating type locus correlates with form specific disease phenotype in the barley net blotch fungus Pyrenophora teres. Eur J. Plant Pathol. 135: 49 — 65.
Google Scholar
Manninen O., Kalendar R., Robinson J., Schulman A. H. 2000. Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264: 325 — 334.
Google Scholar
Manninen O. M., Jalli M., Kalender R., Schulman A., Afanasenko O., Robinson J. 2006. Mapping of major spot-type and net-type net blotch resistance genes in the Ethiopian barley line CI 9819. Genome 49: 1564 — 1571.
Google Scholar
Newton A. C., Akar T., Baresel J. P, Bebeli P. J., Bettencourt E., Bladenopoulos K. V., Czembor J. H., Fasoula D. A., Katsiotis A., Koutis K., Koutsika-Sotiriou M., Kovacs G., Larssson H., Pinheiro de Carvalho M. A. A., Rubiales D., Russell J., Dos Santos T. M. M., Vaz Patto M. C. 2010. Cereal landraces for sustainable agriculture. A review. Agronomy for Sustainable Development 30 (2): 237 — 269.
Google Scholar
Nutter F. W., Pederson V. D., Foster A. E. 1985. Effect of inoculations with Cochliobolus sativus at specific growth stages on grain yield and quality of malting barley. Crop Sci. 25: 933 — 938.
Google Scholar
Rickard J., Brygelsson T., Gustafsson M. 1997. Virulence studies of Swedish net blotch isolates (Drechslera teres) and identification of resistant barley lines. Euphytica 94: 209 — 2018.
Google Scholar
Robinson J., Jalli M. 1996. Diversity among Finnish net blotch isolates and resistance in barley. Euphytica 92: 81 — 87.
Google Scholar
Robinson J., Jalli M. 1997. Quantitative resistance to Pyrenophora teres in six Nordic spring barley accessions. Euphytica 94: 201 — 208.
Google Scholar
Smedegard-Petersen V. 1971. Pyrenophora teres f. maculate now and Pyrenophora teres f. teres on barley in Denmark. Yearbook 1971,. Royal Veterinary and Agricultural University Copenhagen, Denmark: 124 — 144.
Google Scholar
Shaw M.W. 1986. Development of barley net blotch from infested straw and seed. Can. J. Plant Sci. 48: 623 — 625.
Google Scholar
Steffenson B. J., Webster R. K. 1992. Pathotype diversity of Pyrenophora teres f. teres on barley. Phytopathol. 82: 170 — 177.
Google Scholar
Steffenson B. J., Hayes P. M., Kleinhofs A. 1996. Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. sp. teres) and spot blotch (Cochiobolus sativus) in barley. Theor. Appl. Genet. 92: 552 — 558.
Google Scholar
Steffenson B.J., Webster R. K., Jackson L. F. 1991. Reduction in yield loss using incomplete resistance to Pyrenophora teres f. teres in barley. Plant Dis. 75: 96 — 100.
Google Scholar
Tekauz A. 1985. A numerical scale to classify reactions of barley to Pyrenophora teres. Can. J. Plant Pathol.7: 181 — 183.
Google Scholar
Tekauz A. 1986. Effect of plant age and l leaf position on the reaction of barley to Pyrenophora teres. Can. J. Plant Pathol. 8: 380 — 386.
Google Scholar
Tekauz A. 1990. Characterization and distribution of pathogenic variation in Pyrenophora teres f. teres and P. teres f. maculata from Western Canada. Can. J. Plant Pathol. 12: 141 — 148.
Google Scholar
Yitbarek S., L. Berhane L., Fikadu A.,Van Leur J. A. G., Grando S. Ceccarelli S. 1998. Variation in Ethiopian barley landrace populations for resistance to barley leaf scald and net blotch. Plant Breed. 117: 419 — 423.
Google Scholar
Authors
Olga Doraczyńskao.doraczynska@ihar.edu.pl
Pracownia Genetyki Stosowanej, Instytut Hodowli i Aklimatyzacji Roślin — PIB w Radzikowie Poland
Authors
Jerzy H. CzemborPracownia Genetyki Stosowanej, Instytut Hodowli i Aklimatyzacji Roślin — PIB w Radzikowie Poland
Authors
Henryk J. CzemborPracownia Genetyki Stosowanej, Instytut Hodowli i Aklimatyzacji Roślin — PIB w Radzikowie Poland
Authors
Marja JalliMTT Agrifood Research Finland, Plant Protection, FI-31600 Jokioinen, Finlandia Finland
Statistics
Abstract views: 136PDF downloads: 40
License
Copyright (c) 2013 Olga Doraczyńska, Jerzy H. Czembor, Henryk J. Czembor, Marja Jalli
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Marta Puchta, Paulina Bolc, Jerzy H. Czembor, Urszula Piechota, Optimization of the ddRadSeq method for Hordeum sp. and Zea sp. , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Elżbieta Czembor, Marta Puchta, Urszula Piechota, Jerzy H. Czembor, Genetic diversity in the collection of modern and historical inbred lines of maize for resistance to ear rot caused by Fusarium verticillioides and the ability to accumulate fumonisins , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Piotr Słowacki, Paweł Czembor, Jerzy H. Czembor, Mapping of resistance gene in line Ph873-2 of spring barley to leaf rust (Puccinia hordei) , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Joanna Noceń, Kinga Smolińska, Jerzy H. Czembor, Taxonomic classification of accession from the National Center for Plant Genetic Resources — simile of molecular methods , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Jerzy H. Czembor, Aleksandra Pietrusińska, Henryk J. Czembor, Barley genetic resources in plant breeding and research 1998–2018 , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Henryk J. Czembor, Jerzy H. Czembor, Aleksandra Pietrusińska, Olga Domeradzka, Resistance to powdery mildew (Blumeria graminis f.sp. hordei) in barley cultivars included to registration trials in Poland in 2011 , Bulletin of Plant Breeding and Acclimatization Institute: No. 265 (2012): Regular issue
- Henryk J. Czembor, Jerzy H. Czembor, Aleksandra Pietrusińska, Olga Domeradzka, Resistance to powdery mildew (Blumeria graminis f.sp. hordei) of barley cultivars included in the registration trials in Poland in the years 2007–2009 , Bulletin of Plant Breeding and Acclimatization Institute: No. 256 (2010): Regular issue
- Henryk J. Czembor, Resistance to powdery mildew (Blumeria graminis f.sp. hordei) in barley cultivars included in 2004–2006 in registration trials in Poland , Bulletin of Plant Breeding and Acclimatization Institute: No. 248 (2008): Regular issue