The use of sequential yield component analysis (SYCA) in studies on determination of fruit yield variability in blackcurrant (Ribes nigrum L.)

Wiesław Mądry

wieslaw_madry@sggw.edu.pl
Katedra Statystyki Matematycznej i Doświadczalnictwa SGGW, Warszawa (Poland)

Marcin Kozak


Katedra Statystyki Matematycznej i Doświadczalnictwa SGGW, Warszawa (Poland)

Stanisław Pluta


Zakład Hodowli Roślin Sadowniczych, Instytut Sadownictwa i Kwiaciarstwa, Skierniewice (Poland)

Edward Żurawicz


Zakład Hodowli Roślin Sadowniczych, Instytut Sadownictwa i Kwiaciarstwa, Skierniewice (Poland)

Abstract

The aim of the paper was to present an application and usefulness of sequential yield component analysis (SYCA) using an example on determination of fruit yield variability among blackcurrant plants. The following plant determinants of yield were considered (in the ontogenetic order): average number of one-year-old shoots, average length of one-year-old shoots, flowering time, spring frost damage of flowers and average weight of 100 berries. It was proved that sequential yield component analysis is a useful method in studies of relationships between fruit yield per plant of blackcurrant and its determinants which develop in an ontogenetic order. This method could be more suitable in such cases than the linear multiple regression analysis and path analysis. Similar conclusions could be given for other crops, both agricultural and horticultural ones. Description of blackcurrant plant fruit yield variability by its determinants using the proposed method could be important for crop physiology and for breeding directed towards fruit yield.


Keywords:

Ribes nigrum L., SYCA, blackcurrant, correlation coefficients, diallel crosses, fruit yield variability, determinants of yield, sequential yield component analysis

Bock R. D. 1975. Multivariate statistical methods in behavioral research. McGraw-Hill, Toronto.
Google Scholar

Bonney G. E., Kissling G. E. 1986. Gram-Schmidt Orthogonalization of Multinormal Variates: Applications in Genetics. Biom. J. 28: 417 — 425. DOI: https://doi.org/10.1002/bimj.4710280407
Google Scholar

Eaton G. W., Kyte T. R. 1978. Yield component analysis in strawberry. J. Am. Soc. Hort. Sci., 103: 578 — 583. DOI: https://doi.org/10.21273/JASHS.103.5.578
Google Scholar

Eaton G. W., MacPherson E. A. 1978. Morphological components of yield in cranberry, Hort. Res., 17: 73 — 82.
Google Scholar

Fraser J., Eaton G. W. 1983. Applications of Yield Component Analysis to Crop Research. Field Crop Abstracts 36: 787 — 796.
Google Scholar

Gołaszewski J. 1996. A method of yield component analysis. Listy Biometryczne 33: 79 — 88.
Google Scholar

Kozak M. 2002. Statystyczna analiza uwarunkowania zmienności plonu roślin przez jego składowe. Praca doktorska, SGGW, Warszawa.
Google Scholar

Krzyśko M. 2000. Wielowymiarowa analiza statystyczna. UAM, Poznań.
Google Scholar

Mądry W., Kozak M. 2000. Analiza ścieżek i sekwencyjna analiza plonu w badaniach zależności plonu od cech łanu. Cz. I. Opis metod. Rocz. N. Rol., Seria A, 115: 143 — 157.
Google Scholar

Mądry W., Kozak M., Rozbicki J. 2000. Analiza ścieżek i sekwencyjna analiza plonu w badaniach zależności plonu od cech łanu. Cz. II. Zastosowanie metod i porównanie wyników dla pszenżyta ozimego. Rocz. N. Rol., Seria A, 115: 159 — 172.
Google Scholar

Muszyński S., Mądry W. Tomaszewski M., Sowa A., Zimny. J. 2000. Genetyka dla rolników. Fundacja „Rozwój SGGW”, Warszawa.
Google Scholar

Neter J., Wasserman W., Kutner M. H. 1990. Applied linear statistical models. Regression, analysis of variance, and experimental designs. IRWIN, New York.
Google Scholar

Niemiro W. 1999. Rachunek prawdopodobieństwa i statystyka matematyczna. Szkoła Nauk Ścisłych, Warszawa.
Google Scholar

Pluta S. 1995. Analiza dialleliczna cech użytkowych porzeczki czarnej. Praca doktorska, ISK, Skierniewice.
Google Scholar

Rozbicki J. 1997. Agrotechniczne uwarunkowania wzrostu, rozwoju i plonowania pszenżyta ozimego. Rozprawa habilitacyjna, Fundacja Rozwój SGGW, Warszawa.
Google Scholar

Winer B. J. 1971. Statistical principles in experimental design. 2nd Ed. McGraw-Hill, New York.
Google Scholar

Yadav O. P., Manga V. K., Saxena M. B. L. 1994. Ontogenetic approach to grain production in pearl millet (Pennisetum gluacum L.) based on path-coefficient analysis. Indian J. Agric. Sci. 64, s. 233 — 236.
Google Scholar

Zieliński W. 1998. Analiza regresji. Fundacja „Rozwój SGGW”, Warszawa.
Google Scholar


Published
2003-06-30

Cited by

Mądry, W. (2003) “The use of sequential yield component analysis (SYCA) in studies on determination of fruit yield variability in blackcurrant (Ribes nigrum L.)”, Bulletin of Plant Breeding and Acclimatization Institute, (226/227), pp. 31–40. doi: 10.37317/biul-2003-0125.

Authors

Wiesław Mądry 
wieslaw_madry@sggw.edu.pl
Katedra Statystyki Matematycznej i Doświadczalnictwa SGGW, Warszawa Poland

Authors

Marcin Kozak 

Katedra Statystyki Matematycznej i Doświadczalnictwa SGGW, Warszawa Poland

Authors

Stanisław Pluta 

Zakład Hodowli Roślin Sadowniczych, Instytut Sadownictwa i Kwiaciarstwa, Skierniewice Poland

Authors

Edward Żurawicz 

Zakład Hodowli Roślin Sadowniczych, Instytut Sadownictwa i Kwiaciarstwa, Skierniewice Poland

Statistics

Abstract views: 195
PDF downloads: 19


License

Copyright (c) 2003 Wiesław Mądry, Marcin Kozak, Stanisław Pluta, Edward Żurawicz

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 3 4 5 6 > >>