Morphological traits and fertility of hybrids of some Aegilops species with hexaploid wheat Triticum aestivum L.

Roman Prażak

dziekanat.biologii@up.lublin.pl
Katedra Biologii Roślin, Wydział Nauk Rolniczych w Zamościu, Uniwersytet Przyrodniczy w Lublinie (Poland)

Abstract

In the field conditions crosses were carried out between Aegilops biuncialis Vis., Ae. columnaris Zhuk., Ae. cylindrica Host., Ae. triaristata Willd. 4x, Ae. variabilis (peregrina) Eig, Ae. crassa Boiss. 6x and Triticum aestivum L. (cvs. Begra, Legenda, Rusałka, Zyta). The aim of the crosses was to broaden genetic diversity of common wheat. The 18-day-old F1 hybrid embryos isolated from kernels were grown in vitro on the MS nutrient medium supplemented with 10 mg dcm-3 IAA (β-indolyl-3-acetic acid) and 0.04 mg dcm-3 kinetin. After 4 weeks hybrids plants, which developed from isolated embryos, were transferred into pots. Next, in half of September they were planted in experimental field. In spring at the start of vegetation period the hybrid plants were treated with colchicine. In laboratory investigations, fully mature F1 hybrid plants were analyzed for biometrical traits such as total tillering, length of main tiller, diameter of the second internode from the plant base, spike rachis length, main spike compactness (number of spikelets per 1 dcm of the spike rachis), main spike fertility (number of grains per 1 spikelet). Tillering of most hybrids was strong and similar as in the Aegilops species (33.5–124.0 tillers), length of main tiller (87.0–98.0 cm) and spike rachis (0.7–1.3 dcm) were similar to the wheat cultivars. Hybrids had intermediate diameter of the second internode (2.2–3.7 mm) and spike compactness (10.4–14.9) and significantly lower fertility (0.0–1.3) in comparison to parental forms. The fertility of T. aestivum L. cv. Zyta × Ae. cylindrica Host. hybrid was outstanding. Obtaining F1 Aegilops sp. with T. aestivum L. hybrids is the first step allowing to select plants showing high content of protein and microelements (iron and zinc) in kernels and tolerance to drought and fungal diseases.


Keywords:

Aegilops biuncialis, Aegilops columnaris, Aegilops cylindrica, Aegilops triaristata, Aegilops variabilis (peregrina), Aegilops crassa, Triticum aestivum, F1 hybrids, fertility, morphological traits of tiller and spike

Bai D., Scoles G. J., Knott D. R. 1994. Transfer of leaf rust and stem rust resistance genes from Triticum triaristatum to durum and bread wheat’s and their molecular cytogenetic localization. Genome 37 (3): 410 — 418.
Google Scholar

Berzonsky W. A., Kimber G. 1989. The tolerance to aluminium of Triticum N-genome amphiploides. Plant Breed. 103: 37 — 42.
Google Scholar

Blüthner W. D., Schumann E. 1988. Use of Aegilops and tetraploid wheat for wheat protein improvement. Hod. Roślin, Aklim. 32 (1/2): 203 — 206.
Google Scholar

Chueca M., Cauderon Y., Tempe J. 1977. Techniques d’obtention d’hybrides Blé tender × Aegilops par culture in vitro d’embryons immatures. Ann. Amélior. Plantes 27 (5): 539 — 547.
Google Scholar

Coriton O., Barloy D., Huteau V., Lemoine J., Tanguy A., Jahier J. 2009. Assignment of Aegilops variabilis Eig chromosomes and translocations carrying resistance to nematodes in wheat. Genome 52 (4): 338 — 346.
Google Scholar

Doliński R. 1995. Zmienność, odziedziczalność i współzależność właściwości mechanicznych i cech morfologicznych źdźbła pszenicy zwyczajnej (Triticum aestivum L.) warunkujących odporność na wyleganie. Rozprawy Naukowe. Wyd. AR w Lublinie.
Google Scholar

Farooq S., Iqbal N., Asghar M., Shah T. M. 1992. Intergeneric hybridization for wheat improvement — IV. Expression of salt tolerance gene (s) of Aegilops cylindrica in hybrids with hexaploid wheat. Cer. Res. Comm. 20 (1-2): 111 — 118.
Google Scholar

Fernández-Calvín B., Orellana J. 1991. Metaphase-I bound-arm frequency and genome analysis in wheat-Aegilops hybrids. 1. Ae. variabilis-wheat and Ae. kotschyi-wheat hybrids with low and high homoeologous pairing. Theor. Appl. Genet. 83: 264 — 272.
Google Scholar

Frauenstein K., Hammer K. 1985. Prüfung von Aegilops — Arten auf Resistenz gegen Echten Mehttau, Erysiphe graminis D. C. , Braunrost, Puccinia recondita Rob. ex Desm. und Spelzenbraune, Septoria nordum Berk. Kulturpflanze 33: 155 — 163.
Google Scholar

Gorham J. 1990. Salt Tolerance in the Triticeae: K/Na discrimination in Aegilops species. J. Exp. Bot. 41/226: 615 — 621.
Google Scholar

Kiihara H., 1944 Discovery of the DD-analyzer, one of the ancestors of vulgare wheats. Agric. Hortic. 19: 889 — 890.
Google Scholar

Kihara H., Lilienfeld F. A. 1951. Genome analysis in Triticum and Aegilops. Concluding review. Cytologia 16: 101 — 123.
Google Scholar

Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., Hammer K., Özkan H. 2011. Aegilops. In: Kole C. (Eds.). Wild crop relatives: genomic and breeding resources. Cereals. Springer-Verlag Berlin, Heidelberg.
Google Scholar

Kimber G., Feldman M. 1987. Wild wheat: an introduction. college of agriculture. University of Missouri, Columbia, Special Report 353: 1 — 146.
Google Scholar

Li W. L., Nelson J. C., Chu C. Y., Shi L. H., Huang S. H., Liu D. J. 2002. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125: 357 — 366.
Google Scholar

Loureiro I., Escorial M. C., García-Baudin J. M., Chueca M. C. 2007. Hybridization between wheat (Triticum aestivum) and the wild species Aegilops geniculata and A. biuncialis under experimental field conditions. Agriculture, Ecosystems and Environment 120: 384 — 390.
Google Scholar

Łomnicki A. 2000. Wprowadzenie do statystyki dla przyrodników. PWN, Warszawa.
Google Scholar

McFadden E. S., Sears E.R. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37: 81 — 89.
Google Scholar

Miller T., Hutchinson E., Chapman V. 1982. Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor. Appl. Genet. 61: 27 — 33.
Google Scholar

Molnár I., Gáspár L., Sárvári E., Dulai S., Hoffmann B., Molnár-Láng M., Galiba G. 2004. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology 31 (12): 1149 — 1159.
Google Scholar

Molnár I, Dulai S, Molnár-Láng M. 2008. Can the drought tolerance traits of Ae. biuncialis manifest even in the wheat genetic background ? Acta Biol. Szeged. 52: 175 — 178 .
Google Scholar

Morrison L. A., Riera-Lizarazu O., Crémieux L., Mallory-Smith C. A. 2002. Jointed goatgrass (Aegilops cylindrica Host) × wheat (Triticum aestivum L.) hybrids. Crop Sci. 42: 1863 — 1872.
Google Scholar

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473 — 497.
Google Scholar

Pilch J., Głowacz E. 1997. Międzygatunkowe i międzyrodzajowe krzyżowania jako sposób ulepszania cech kłosa w hodowli pszenicy heksaploidalnej Triticum aestivum L. Biul. IHAR 204: 15 — 31.
Google Scholar

Pilch J. 2003. Uwarunkowanie genetyczne cech morfologicznych kłosa pszenicy (Triticum aestivum L.). Biul. IHAR 228: 21 — 31.
Google Scholar

Pilch J. 2005. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozimej Triticum aestivum L. Część I. Zastosowanie systemów genetycznych pszenicy T. aestivum L. do otrzymania mieszańców pomostowych F1. Biul. IHAR 235: 31 — 41.
Google Scholar

Prażak R. 1992. Cechy morfologiczne gatunków rodzaju Aegilops oraz pszenicy ozimej Triticum aestivum odmiany Rusałka. Biul. IHAR 183: 107 — 117.
Google Scholar

Prażak R. 1997. Charakterystyka morfologiczna mieszańców F1 Triticum aestivum L. i Triticum durum Desf. z wybranymi gatunkami Aegilops sp. Biul. IHAR 204: 33 — 42.
Google Scholar

Prażak R. 2000. Mieszańce F1 Aegilops triaristata 6x z pszenżytem (X Triticosecale Wittmack) i pszenicą (Triticum aestivum L.). Folia Univ. Agric. Stetin. 206 Agricultura (82): 231 — 236.
Google Scholar

Prażak R. 2004. Porównanie zawartości białka w ziarnie gatunków Aegilops i Triticum. Zesz. Probl. Post. Nauk Rol. 497: 509 — 516.
Google Scholar

Prażak R. 2007. Ocena zimotrwałości, wczesności i porażania przez rdzę brunatną i mączniaka prawdziwego gatunków Aegilops w warunkach Polski wschodniej. Zesz. Probl. Post. Nauk Rol. 517: 603 — 612.
Google Scholar

Rawat N., Tiwari V. K., Singh N., Randhawa G. S., Singh K., Chhuneja P., Dhaliwal H. S. 2009. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet. Resour. Crop Evol. 56: 53 — 64.
Google Scholar

Riley R., ChapmanV., Miller T. E. 1973. The determination of meiotic chromosome pairing. Proc. 4th Int. Wheat Genet. Symp. Univ. Columbia. MO: 731 — 738.
Google Scholar

Schoenenberger N., Guadagnuolo R., Savova-Bianchi D., Küpfer P., Felber F. 2006. Molecular analysis, cytogenetics and fertility of introgression lines from transgenic wheat to Aegilops cylindrica Host. Genetics 174: 2061 — 2070.
Google Scholar

Sears E.R. 1981. Transfer of alien genetic material to wheat. P. 75-89. In: Evans L.T. Peacock W. J. (Eds.). Wheat Science — Today and Tomorrow. Cambridge University Press, Cambridge.
Google Scholar

Sharma H. C. 1995. How wide can a wide cross be ? Euphytica 82: 43 — 64.
Google Scholar

Simeone R., Pignone D., Blanco A., Attolico M. 1989. Cytology and fertility of hybrids and amphiploids between Aegilops caudata L. × Triticum turgidum (L.) Thell. Plant Breed. 103: 189 — 195.
Google Scholar

Spetsov P., Mingeot D., Jacquemin J. M., Samardijeva K., Marinova E. 1997. Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93: 49 — 54.
Google Scholar

Stefanowska G. 1995. Charakterystyka niektórych cech morfologicznych i plonotwórczych mieszańców Triticum aestivum L. z Aegilops juvenalis (Thell.) Eig. i z Aegilops ventricosa Tausch. Biul. IHAR 194: 35 — 43.
Google Scholar

Tarkowski Cz. (red.) 1994. Przewodnik do ćwiczeń z genetyki, hodowli roślin i nasiennictwa. Wyd. AR w Lublinie.
Google Scholar

Tarkowski Cz. 1995. Genetyka, hodowla roślin i nasiennictwo. Wyd. AR w Lublinie.
Google Scholar

Watanabe N., Sugiyama K., Yamagishi Y., Sakata Y. 2003. Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheat. Hereditas 137: 180 — 185.
Google Scholar

Watanabe N., Takesada N., Shibata Y., Ban T. 2005. Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitur of wheat. Euphytica 144: 119 — 123.
Google Scholar

Watanabe N., Fuji Y., Kato N., Ban T., Martinek P. 2006. Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats. J. Appl. Genet. 47 (2): 93 — 98.
Google Scholar

Wojciechowska B., Pudelska H. 2002a. Production and morphology of the hybrids Aegilops kotschyi × Secale cereale and Ae. biuncialis × S. cereale. J. Appl. Genet. 43 (3): 279 — 285.
Google Scholar

Wojciechowska B., Pudelska H. 2002b. Hybrids and amphiploids of Aegilops ovata L. with Secale cereale L.: production, morphology and fertility. J. Appl. Genet. 43 (4): 415 — 421.
Google Scholar

Wojciechowska B., Pudelska H. 2005. Production and characterization of amphiploids and of backcross hybrids of Ae. biuncialis × Secale cereale amphiploids with 2x and 4x S. cereale. J. Appl. Genet. 46 (2): 157 — 161.
Google Scholar

Zaharieva M., Monneveux P. 2005. Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci. 46 (2): 512 — 527.
Google Scholar


Published
2012-03-29

Cited by

Prażak, R. (2012) “Morphological traits and fertility of hybrids of some Aegilops species with hexaploid wheat Triticum aestivum L. ”, Bulletin of Plant Breeding and Acclimatization Institute, (263), pp. 3–17. doi: 10.37317/biul-2012-0072.

Authors

Roman Prażak 
dziekanat.biologii@up.lublin.pl
Katedra Biologii Roślin, Wydział Nauk Rolniczych w Zamościu, Uniwersytet Przyrodniczy w Lublinie Poland

Statistics

Abstract views: 65
PDF downloads: 47


License

Copyright (c) 2012 Roman Prażak

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.