The influence of selected cytokinins on micropropagation of Salvia officinalis
Aleksandra Luwańska
sekretariat@iwnirz.plInstytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu, Zakład Biotechnologii (Poland)
Karolina Wielgus
Instytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu, Zakład Biotechnologii (Poland)
Marlena Szalata
Uniwersytet Przyrodniczy w Poznaniu, Katedra Biochemii i Biotechnologii (Poland)
https://orcid.org/0000-0002-0153-4317
Milena Szalata
Instytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu, Zakład Biotechnologii (Poland)
Ryszard Słomski
Uniwersytet Przyrodniczy w Poznaniu, Katedra Biochemii i Biotechnologii (Poland)
https://orcid.org/0000-0001-5601-7002
Abstract
Common sage (Salvia officinalis) is a plant with a very wide range of healing properties, from which the most important are disinfecting, anti-inflammatory and antisudoral effects. Sage extracts regulate the digestive system and increase blood sugar level. They are also a strong antiseptic medicine which inactivates bacterial toxins and inhibits reproduction of many Gram-positive and Gram-negative bacteria, including the antibiotic-resistant ones. Sage owes its versatile properties to its essential oil composition containing among others thujone, cineole, camphor, borneol and pinene. Apart from the above, it also contains catechins, triterpene, flavonoids, carnosol and organic acids, vitamins B1, C, PP and carotene. Use of in vitro techniques enables mass propagation of selected plants with the best healing parameters or plants with new features gained through transformation. The aim of the study was the determination of the influence of selected cytokinins on micropropagation efficiency of S. officinalis. Materials for research were apical explants of sage cultivar Bona. The cultivation was conducted on the Murashige Skoog (MS) medium, containing different concentration of kinetin, BAP and zeatin (2, 5, 10 mg/ml). The best plant multiplication rate was obtained by using cytokinin BAP (3.5–3, depending on the concentration), however an excessive percentage of vitrificated plants limited the use of this phytohormone. Effectiveness and stability of the micropropagation using BAP at concentration 0.3 mg/l was verified during long term cultivation (to n-6 subculture). The work also included use of cytokinin meta-Topolin as alternative for BAP phytohormone. The best results in the sage micropropagation process were obtained by the application of medium with 0.3 mg/l of BAP. In this case multiplication rate varies between 2.4 and 3.4 during the successive propagation cycles.
Supporting Agencies
Keywords:
BAP, in vitro, cytokinins, micropropagation, sageReferences
Akhondzadeh S., Noroozian M., Mohammadi M., Ohadinia S., Jamshidi A. H., Khani M. 2003. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. Journal of Clinical Pharmacy and Therapeutics 28: 53 — 59.
Google Scholar
Arikat N. A., Jawad F. M., Karama N. S., Shibli R. A. 2004. Micropropagation and accumulation of essential oils in wild sage (Salvia fruticosa Mill.). Scientia Horticulturae 100: 193 — 202.
Google Scholar
Avato P., Fortunato I. M., Ruta C., D’Elia R. 2005. Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L. Plant Sci. 169: 29 — 36.
Google Scholar
Echeverrigaray S., Carrer R. P., Andrade L. B. 2010. Micropropagation of Salvia guaranitica Benth. through axillary shoot proliferation. Brazilian Archives of Biology and Technology Vol. 53, 4: 883 — 888.
Google Scholar
Gostin I. 2008. Effects of different plant hormones on Salvia officinalis cultivated in vitro. Intern. J. Botany 4 (4): 430 — 436.
Google Scholar
Grzegorczyk I., Matkowski A. Wysokińska H. 2007. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chemistry 104: 536 — 541.
Google Scholar
Grzegorczyk I., Wysokińska H. 2008. Liquid shoot culture of Salvia officinalis L. for micropropagation and production of antioxidant compounds; effect of triacontanol. Acta Societatis Botanicorum Poloniae Vol. 77, No. 2: 99 — 104.
Google Scholar
Jasiński M., Banasiak J., Frankowska M., Figlerowicz M. 2006. Rośliny jako reaktory do produkcji biofarmaceutyków. Biotechnologia 3 (74): 56 — 66.
Google Scholar
Kalemba D., Kunicka A. 2003. Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry 10: 813 — 829.
Google Scholar
Kintzios S., Nikolaou A., Skoula M. 1999. Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S. fruticosa leaf callus cultures. Plant Cell Reports 18: 462 — 466.
Google Scholar
Langer R., Mechtler Ch., Jurenitsch J. 1996. Composition of the essential oils of commercial samples of Salvia officinalis L. and S. fruticosa Miller: A Comparison of oils obtained by extraction and steam distillation. Phytochemical Analysis Vol. 7: 289 — 293.
Google Scholar
Liu W., Chilcott C. E., Reich R. C., Hellmann G. M. 2000. Regeneration of Salvia sclarea via organogenesis. In Vitro Cell. Dev. Biol.-Plant 36: 201 — 206.
Google Scholar
Longaray Delamare A. P., Moschen-Pistorello I. T., Artico L., Atti-Serafini L., Echeverrigaray S. 2007. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in south Brazil. Food Chemistry 100: 603 — 608.
Google Scholar
Lu Y., Foo L. Y. 2000. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 55: 263 — 267.
Google Scholar
Miura K., Kikuzaki H., Nakatani N. 2001. Apianane terpenoids from Salvia officinalis. Phytochemistry 58 1171 — 1175.
Google Scholar
Radulescu V., Chiliment S., Oprea E. 2004. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis. Journal of Chromatography A, 1027: 121 — 126.
Google Scholar
Ruffoni B., Raffi D., Rizzo A., Oleszek W., Giardi M. T., Bertoli A., Pistelli L. 2009. Establishment of in vitro Salvia cell biomass for the controlled production of antioxidant metabolites. Acta Horticulturae No. 829: 423 — 427.
Google Scholar
Santos-Gomes P. C., Seabra R. M., Andrade P. B., Fernandes-Ferreira M. 2002. Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.) Plant Sci. 162: 981 — 987.
Google Scholar
Stanojevic D., Comic Lj., Stefanovic O., Solujic-Sukdolak S. 2010. In vitro synergistic antibacterial activity of Salvia officinalis L. and some preservatives. Archives of Biological Sciences, ISSN 0354-4664 No. 62 (1): 167 — 173.
Google Scholar
Szajdek A., Borowska J. 2004. Właściwości przeciwutleniające żywności pochodzenia roślinnego. Żywność. Nauka. Technologia. Jakość, 4 (41): 5 — 28.
Google Scholar
Tawfik A. A., Mohamed M. F. 2007. Regeneration of Salvia (Salvia officinalis L.) via induction of meristematic callus. In Vitro Cell. Dev. Biol. Plant 43: 21 — 27.
Google Scholar
Viuda-Martos M., Ruiz-Navajas Y., Fernandez-Lopez J., Perez-Alvarez J. A. 2008. Antibacterial activity of different essential oils obtained from spices widely used in Mediterranean diet. International Journal of Food Science and Technology, 43: 526 — 531.
Google Scholar
Wysokińska H., Chmiel A. 2006. Produkcja roślinnych metabolitów wtórnych w kulturach organów transformowanych. Biotechnologia 4 (75): 124 — 135.
Google Scholar
Authors
Aleksandra Luwańskasekretariat@iwnirz.pl
Instytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu, Zakład Biotechnologii Poland
Authors
Karolina WielgusInstytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu, Zakład Biotechnologii Poland
Authors
Marlena SzalataUniwersytet Przyrodniczy w Poznaniu, Katedra Biochemii i Biotechnologii Poland
https://orcid.org/0000-0002-0153-4317
Authors
Milena SzalataInstytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu, Zakład Biotechnologii Poland
Authors
Ryszard SłomskiUniwersytet Przyrodniczy w Poznaniu, Katedra Biochemii i Biotechnologii Poland
https://orcid.org/0000-0001-5601-7002
Statistics
Abstract views: 43PDF downloads: 47
License
Copyright (c) 2011 Aleksandra Luwańska, Karolina Wielgus, Marlena Szalata, Milena Szalata, Ryszard Słomski
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Grażyna Mańkowska, Iwona Rutkowska-Krause, Aleksandra Luwańska, Karolina Wielgus, Joanna Makowiecka, Use of anther culture to improve flax (Linum usitatissimum L.) resistance to Fusarium wilt , Bulletin of Plant Breeding and Acclimatization Institute: No. 260/261 (2011): Regular issue
- Aleksandra Luwańska, Karolina Wielgus, Marlena Szalata, Daniel Lipiński, Joanna Zeyland, Ryszard Słomski, Optimisation of the conditions for in vitro regeneration of sage , Bulletin of Plant Breeding and Acclimatization Institute: No. 270 (2013): Regular issue
- Grażyna Mańkowska, Aleksandra Luwańska, Karolina Wielgus, Jan Bocianowski, Evaluation of cannabinoid content in selected varieties of Cannabis sativa L. , Bulletin of Plant Breeding and Acclimatization Institute: No. 277 (2015): Regular issue
- Grażyna Mańkowska, Aleksandra Luwańska, Karolina Grygorowicz, Karolina Wielgus, Initiation of in vitro cultures and micropropagation of sida (Sida hermaphrodita R.) , Bulletin of Plant Breeding and Acclimatization Institute: No. 268 (2013): Regular issue
- Aleksandra Luwańska, Karolina Jarzyniak, Joanna Makowiecka, Karolina Wielgus, Propagation of valuable genotype of Aesculus hippocastanum L. by micropropagation , Bulletin of Plant Breeding and Acclimatization Institute: No. 260/261 (2011): Regular issue