Application of the RAPD and SSR methods to genetic similarity assessment of tetraploid species of the Avena L. genus

Edyta Paczos-Grzęda

edyta.paczos@up.lublin.pl
Instytut Genetyki, Hodowli i Biotechnologii Roślin, Uniwersytet Przyrodniczy w Lublinie (Poland)

Abstract

Tetraploids of the genus Avena L.: A. maroccana, A. murphyi and A. macrostachya were evaluated for genetic similarity and relatedness with the hexaploid species A. sativa and A. sterilis based on RAPD and SSR polymorphism. Fifteen RAPD primers produced 129 polymorphic DNA fragments and 13 SSR primer pairs amplified 141 products of such type. Polymorphism information content (PIC) values ranged from 0.58 to 0.80 for RAPD and from 0.71 to 0.92 for SSR. Mean values of PIC for RAPD was 0.67 and for SSR — 0.82. Dice genetic similarity indices were used for cluster analysis with the UPGMA method. The AACC genome tetraploids clustered together with the AACCDD genome hexaploids. Simultaneously, AACC tetraploids: A. maroccana and A. murphyi were found to form two separate subclusters. The analyzed genotypes of the CCCC autotetraploid A. macrostachya formed an outer branch, indicating a major genomic divergence. Topology of both constructed dendrograms was the same and consistent with the Avena L. genus systematics.

 

Keywords:

Avena L., RAPD, SSR, podobieństwo genetyczne

Benchacho M., Guma R., Perez de la Vega M., Garcia P. 2002. The genetic structure of tetraploid Avena: a comparison of isozyme and RAPD markers. Cellular & Molecular Biology Letters. Vol. 7: 465 — 469.
Google Scholar

Chrząstek M., Paczos-Grzęda E., Miazga D. 2004. Charakterystyka cytologiczna i molekularna niektórych gatunków z rodzaju Avena L. Rozprawy i monografie. „Genetyka w ulepszaniu roślin użytkowych”. Poznań: 67 — 74.
Google Scholar

Drossou A., Katsiotsi A., Leggett J. M., Lukas M., Tsakas S. 2004. Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theor. Appl. Genet. 109: 48 — 54.
Google Scholar

Fennimore S. A., Nyquist W. E., Shaner G. E., Doerge R. W., Foley M. E. 1999. A genetic model and molecular markers for wild oat (Avena fatua L.) seed dormancy. Theor. Appl. Genet. 99: 711 — 718.
Google Scholar

Frey K. J. 1986. Genetic resources and their use in oat breeding. In: Lawes D. A., Thomas H. (ed.). Proc. of the 2nd Int. Oat Conf. 1985, Aberystwyth, UK: 9 — 15.
Google Scholar

Frey L., Rutkowski L. 2002. Wykaz gatunków (suplement 3). W: L. Frey (red.), Polska księga traw. Instytut Botaniki im. W. Szafera, Polska Akademia Nauk, Kraków: 87 — 95.
Google Scholar

Fu Y. B., Williams D. J. 2008. AFLP variation in 25 Avena species. Theor. Appl. Genet. 117: 333 — 342.
Google Scholar

Holland J. B., Helland S. J., Sharopova N., Rhyne D. C. 2001. Polymorphism of PCR — based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44: 1065 — 1076.
Google Scholar

Jellen E. N., Phillips R. L. 1993. C-banded cariotypes and polymorphisms in hexaploid oat accessions (Avena ssp.) using Wright’s stain. Genome 36: 1129 — 1137.
Google Scholar

Ladizinsky G. 1999. Cytogenetic relationships between A. insularis (2n=28) and both A. strigosa (2n=14) and A. murphyi (2n=28). Genet. Res. and Crop Evol. 46: 501 — 504.
Google Scholar

Leggett J. M. 1996. Using and conserving Avena genetic resources. Proc. of 5th International Oat Conference: 128 — 132.
Google Scholar

Li C. D., Rossnagel B. G., Scoles G. J. 2000. The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor. Appl. Genet. 101: 1259 — 1268.
Google Scholar

Loscutov I. G. 2008. On evolutionary pathways of Avena species. Genet Res. Crop Evol. 55: 211 — 220.
Google Scholar

Loskutov I. G., Perchuk I. N. 2000. Evaluation of interspecific diversity in Avena genus by RAPD analysis. Oat Newslett 46.
Google Scholar

Milligan B. G. 1992. Plant DNA isolation. In: Molecular analysis of populations: a practical approach. IRL Press, Oxford, UK: 59 — 88.
Google Scholar

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321 — 3323.
Google Scholar

Nei M., Li W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269 — 5273.
Google Scholar

Nocelli E., Giovannimi T., Bioni M., Alicchio R. 1999. RFLP- and RAPD-based genetic relationships of seven diploid species of Avena with the A genome. Genome 42: 950 — 959.
Google Scholar

Pal N., Sandhu J. S., Dormier L. L., Kolb F. L. 2002. Development and characterization of microsatellite and RFLP — derived PCR markers in oat. Crop Sci. 42: 912 — 918.
Google Scholar

Pejic I., Ajmone-Marsan P., Morgante M., Kozumplicck V., Castiglioni P., Taramino G., Motto M. 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet. 97: 248 — 1255.
Google Scholar

Penner G. A., Chong J., Levesque-Lemay M., Molnar S. J., Fedak G. 1993. Identification of RADP marker linked to the oat stem rust gene Pg3. Theor. Appl. Genet. 85: 702 — 705.
Google Scholar

Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., Rafalski A. 1996. Comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225 — 238.
Google Scholar

Rajhathy T., Thomas H. 1974. Cytogenetics of oats (Avena L.). Misc. Publ. Genet. Soc., Ottawa, ON.
Google Scholar

Rohlf F. J. 2001. NTSYS — pc numerical taxonomy and multivariate analysis system. Version 5.1. Exeter Publishing Ltd., Setauket, N. Y.
Google Scholar

Ronald P. S., Penner G. A., Brown P. D. 1996. Identification of RAPD markers linked to genetic factors controlling hull content in oat (Avena sativa L.). Proc. Of V Int. Oat. Conf. 93: 292 — 294.
Google Scholar

Stalker H. T. 1980. Utilization of wild species for crop improvement. Advances in Agronomy No. 33: 111 — 147.
Google Scholar

Sztuba-Solińska J. 2005. Systemy markerów molekularnych i ich zastosowanie w hodowli roślin. Kosmos 54 (2–3): 227 — 239.
Google Scholar

Thomas H. 1992. Cytogenetics of Avena. In: Oat science and technology. Ed.: H. G. Marshall, J. Sorrells. American Society of Agronomy. Agronomy Monograph No. 33, Madison, Wis., USA: 473 — 507.
Google Scholar

Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. 1990. DNA polymorphisms amplified by arbitrary primes are useful as genetic markers. Nucl. Acid. Res. 18: 6531 — 6535.
Google Scholar

Zeller F. J. 1998. Nutzung des genetischen Potentials der Avena - Wildarten zur Verbesserung des Saathafers (Avena sativa L.). Journal of Applied Botany 72: 180 — 185.
Google Scholar

Zietkiewicz E., Rafalski A., Labuda D. 1994. Genome fingerprinting by simple-sequence repeat (SSR) — anchored polymerase chain reaction amplification. Genomics 20: 176 — 183.
Google Scholar


Published
2009-06-30

Cited by

Paczos-Grzęda, E. (2009) “Application of the RAPD and SSR methods to genetic similarity assessment of tetraploid species of the Avena L. genus ”, Bulletin of Plant Breeding and Acclimatization Institute, (252), pp. 225–234. doi: 10.37317/biul-2009-0070.

Authors

Edyta Paczos-Grzęda 
edyta.paczos@up.lublin.pl
Instytut Genetyki, Hodowli i Biotechnologii Roślin, Uniwersytet Przyrodniczy w Lublinie Poland

Statistics

Abstract views: 53
PDF downloads: 23


License

Copyright (c) 2009 Edyta Paczos-Grzęda

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)