Cry1Ab expression in MON810 maize varieties in Poland — impact on non-target organisms the grain aphid (Sitobion avenae F.) and the bird cherry-oat aphid (Rhopalosiphum padi L.)

Anna Linkiewicz

a.linkiewicz@ihar.edu.pl
Laboratorium Kontroli GMO, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie (Poland)

Magdalena Żurawska-Zajfert


Laboratorium Kontroli GMO, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie (Poland)

Zbigniew T. Dąbrowski


Katedra Entomologii Stosowanej, Wydział Ogrodniczy Szkoły Głównej Gospodarstwa Wiejskiego (Poland)

Sławomir Sowa


Laboratorium Kontroli GMO, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie (Poland)

Abstract

The transgenic MON810 maize (Zea mays L.), expressing Cry1Ab protein and known to have the most effective protection against European corn borer, has been cultivated in Poland since 2007. MON810 cultivars express 92 kDA N-terminal fragment of Cry1Ab protein from Bacillus thuringiensis (Bt) ssp. kurstaki strain HD1, assuring protection against Lepidoptera insects. Possible unintended effects of the widespread planting of Bt crops (insect resistance, impact on non-target organisms) are related to the expression level of Bt protein. Non-target herbivores and beneficial insects may be affected by direct feeding on the transgenic crop or by interactions in tri-trophic systems. In MON810 plants the Bt protein expression should have constitutive character due to the presence of 35S promoter. However, considerable variations in the expression level of Cry1Ab protein have been reported. A quantitative Enzyme-Linked Immunosorbent Assay (ELISA) was used to quantify the levels of Cry1Ab protein in DKC60-16Bt and DKC3421YG cultivars grown under greenhouse and field conditions. The tissue-specific expression and cultivation-dependent abundance of Cry1Ab protein were determined. The accumulation of Bt protein in selected non-target organisms is discussed.

 

Supporting Agencies

The work was carried out with the participation of funds from the grant of the Ministry of Science and Higher Education No. 1511/P01/2006/31

Keywords:

MON810, aphids, Cry1Ab expression, non-target species, risk assessment

Alstad, D. N., Andow D. A. 1995. Managing the evolution of insect resistance to transgenic plants. Science 268: 1894 — 6.
Google Scholar

Bruns, H. A., Abel C. A. 2007. Effects of nitrogen fertility on Bt endotoxin levels in corn. Journal of Entomological Science. 42 (1): 35 — 34.
Google Scholar

Carozzi N. B., Warren G. W., Desai N., Jayne S. M., Lotstein R., Rice D. A., Evola S., Koziel M. G. 1992. Expression of a chimeric CaMV35S Bacillus thuringiensis insecticidal protein in transgenic tobacco. Plant Molecular Biology 20: 539 — 548.
Google Scholar

Coviella C. E., Morgan D. J. W., Trumble J. T. 2000. Interactions of elevated CO2 and nitrogen fertilization: Effects on production of Bacillus thuringiensis toxins in transgenic plants. Environ. Microbiol. 29: 781 — 787.
Google Scholar

Dutton A., D’Alessandro M., Romeis J., Bigler F. 2004. Assessing expression of Bt-toxin (Cry1Ab) in transgenic maize under different environmental conditions. In: GMOs in Integrated Production. Ecological Impact of Genetically Modified Organisms. Editors Romeis J., Bigler F., IOBC/WPRS vol. 27 (3): 49 — 55.
Google Scholar

Dutton A., Obrist L. D.,’Alessandro M., Diener L., Romeis J., Bigler F. 2004. Tracking Bt-toxin in transgenic maize to assess the risk of non target arthropods. In: GMOs in Integrated Production. Ecological Impact of Genetically Modified Organisms. Editors Romeis J., Bigler F., IOBC/WPRS vol. 27 (3): 57 — 63.
Google Scholar

Faria C. A., Wäckers F. L., Pritchard J., Barrett D. A., Turlings, T. C. J. 2007. High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteron pests. PLoS ONE 2: e600. doi:10.1371/journal.pone.0000600.
Google Scholar

Gould F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annual Review of Entomology 43: 701 — 726.
Google Scholar

Griffiths B. S., Caul S., Thompson J., Birch A. N., Scrimgeour C., Cortet J., Foggo A., Hacket C. A., Krogh, P. H. 2006. Soil microbial and faunal community responses to Bt maize and insecticide in two soils. J. Environ. Qual. 35: 734 — 741.
Google Scholar

Hilbeck A. Schmidt J. E. U., 2006. Another view on Bt proteins — how specific are they and what else might they do? Biopesticides International 2: 1 — 50.
Google Scholar

Höfte H., Whiteley H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 53 (2): 242 — 55.
Google Scholar

Lipa J. J. 2004. Zachodnia stonka kukurydziana (Diabrotica virgifera Le Conte) zagraża Polsce — konieczny monitoring i środki zapobiegawcze. Postępy w Ochronie Roślin 44 (1): 197 — 201.
Google Scholar

Lisowicz F. 2003. Narastająca szkodliwość omacnicy prosowianki (Ostrinia nubilalis Hbn.) dla kukurydzy w południowo-wschodniej Polsce. Prog. Pl. Protection/Post. Ochr. Roślin 43 (1): 245 — 250.
Google Scholar

Maessen G. D. F. 1997. Genomic stability and stability of expression in genetically modified plants. Acta. Bot. Neerl. 46: 3 — 24.
Google Scholar

Neumann K., Droge-Laser W., Kohne S., Broer. I. 1997. Heat treatment results in a loss of transgene-encoded activities in several tobacco lines. Plant Physiology, Vol. 115, 3: 939 — 947.
Google Scholar

Nguyen, H. T., J. A. Jehle 2007. Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize Mon810. Journal of Plant Diseases and Protection 114: 820 — 87.
Google Scholar

Pons X., Lumbierres B., Lopez C., Albajes R. 2005. Abundance of non-target pests in transgenic Bt-maize: A farm scale study Eur. J. Entomol. 2005, 102 (1): 73 — 79.
Google Scholar

Raps A., Kehr J., Gugerli P., Moar W. J., Bigler F., Hilbeck A. 2001. Immunological analysis of phloem sap of Bacillus thurigiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera : Aphididae) for the presence of Cry1Ab , Molecular Ecology 10: 525 — 533.
Google Scholar

Romeis J., Bartsch D., Bigler F., Candolfi M. P., Gielkens M. M. C., Hartley S. E., Hellmich R. L., Huesing J. E., Jepson P. C., Layton R., Quemada H., Raybould A., Rose R. I., Schiemann J., Sears M. K., Shelton A. M., Sweet J., Vaituzis Z., Wolt J. D. 2008. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nature Biotechnology 26: 203 — 208
Google Scholar

Sanvido O., Stark M., Romeis J., Bigler F. 2006. Ecological impacts of genetically modified crops: experiences from ten years of experimental field research and commercial cultivation, Agroscope Reckenholz Tänikon Research Station ART, Zurich, Switzerland.
Google Scholar

Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R, Dean D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol. Biol. Rev. 62 (3): 775 — 806. Tiedje, J.M., Colwell R. K., Grossman Y. L., Hodson R. E., Lenski R. E., Mack R. N., Regal P. J. 1989. The planned introduction of genetically engineered organisms: Ecological considerations and recommendations. Ecology 70: 298 — 315.
Google Scholar


Published
2009-06-30

Cited by

Linkiewicz, A. (2009) “Cry1Ab expression in MON810 maize varieties in Poland — impact on non-target organisms the grain aphid (Sitobion avenae F.) and the bird cherry-oat aphid (Rhopalosiphum padi L.)”, Bulletin of Plant Breeding and Acclimatization Institute, (252), pp. 263–274. doi: 10.37317/biul-2009-0074.

Authors

Anna Linkiewicz 
a.linkiewicz@ihar.edu.pl
Laboratorium Kontroli GMO, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie Poland

Authors

Magdalena Żurawska-Zajfert 

Laboratorium Kontroli GMO, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie Poland

Authors

Zbigniew T. Dąbrowski 

Katedra Entomologii Stosowanej, Wydział Ogrodniczy Szkoły Głównej Gospodarstwa Wiejskiego Poland

Authors

Sławomir Sowa 

Laboratorium Kontroli GMO, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie Poland

Statistics

Abstract views: 146
PDF downloads: 21


License

Copyright (c) 2009 Anna Linkiewicz, Magdalena Żurawska-Zajfert, Zbigniew T. Dąbrowski, Sławomir Sowa

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.