Plant cysteine endoproteinases and their multiple physiological roles
Małgorzata Grudkowska
m.grudkowska@ihar.edu.plInstytut Hodowli i Aklimatyzacji Roślin w Radzikowie (Poland)
Barbara Zagdańska
Zakład Biochemii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie (Poland)
Abstract
Cysteine endoproteinases are recognised as the major enzymes responsible for the initiation and subsequent massive hydrolysis of seed storage proteins during germination and early seedling growth and development. These enzymes are also involved in such important processes as organ senescence and xylogenesis. In response to unfavourable environmental conditions like low and high temperature, water deficit and salinity as well as to biotic stresses, the up-regulation of expression of genes encoding cysteine endoproteinases has been shown. Their supposed physiological function is not restricted to removal of denatured proteins, toxic in cases of pathogen infection or insect attack, abnormal proteins resulting from the stress-induced changes and to degradation of proteins no longer required by a cell in a new metabolic state. Another important function of these enzymes may be linked to activation of stress-induced non-specific proteins. On the basis of experiments carried out on 55 cultivars and strains of winter wheat and on ten cultivars of spring wheat it has been shown that the induction of cysteine endoproteinases was significantly correlated with the level of drought tolerance of spring and winter wheat as well as with the level of frost tolerance of winter wheat.
Keywords:
cysteine endoproteinases, protein hydrolysis, frost resistance, drought resistance, biotic stress resistanceReferences
Beers E. P., Freeman T. B. 1997. Proteinase activity during tracheary element differentiation in Zinnia mesophyll cultures. Plant Physiol. 113:873 — 880.
DOI: https://doi.org/10.1104/pp.113.3.873
Google Scholar
Beers E. P., Woffenden B. J., Zhao Ch. 2000. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44: 399 — 415.
DOI: https://doi.org/10.1023/A:1026556928624
Google Scholar
Bethke P. C., Swanson S. J., Hillmer S., Jones R. 1998. From storage compartment to lytic organelle: the metamorphosis of the aleurone protein storage vacuole. Ann. Bot. 82: 399 — 412.
DOI: https://doi.org/10.1006/anbo.1998.0702
Google Scholar
Bewley J. D., Black M. 1994. Seeds. Physiology of Development and Germination, 2nd ed. Plenum, New York.
DOI: https://doi.org/10.1007/978-1-4899-1002-8
Google Scholar
Bottari A., Cappocchi A., Fontanini D., Galeschi L. 1996. Major proteinase hydrolysing gliadin during wheat germination. Phytochem. 43: 39 — 44.
DOI: https://doi.org/10.1016/0031-9422(96)00193-8
Google Scholar
Callis J. 1995. Regulation of protein degradation. Plant Cell 7: 845 – 857.
DOI: https://doi.org/10.1105/tpc.7.7.845
Google Scholar
Cercós M., Harris N., Carbonell J. 1993. Immunolocalization of a thiol-protease induced during the senescence of unpollinated pea ovaries. Physiol. Plant. 88: 275 — 280.
DOI: https://doi.org/10.1111/j.1399-3054.1993.tb05499.x
Google Scholar
deBarros E.G., Larkins B.A. 1994. Cloning of a cDNA encoding a putative cysteine protease gliadin during wheat germination. Phytochem. 43: 39 — 44.
Google Scholar
del Pozo O., Lam E. 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8: 1129 — 1132.
DOI: https://doi.org/10.1016/S0960-9822(98)70469-5
Google Scholar
Diaz P., Wilson K. A., Tan-Wilson A. L. 1993. Immunocytochemical analysis of proteolysis in germinating soybean. Phytochem. 33 (5): 961 — 968.
DOI: https://doi.org/10.1016/0031-9422(93)85005-C
Google Scholar
Downing W. L., Mauxion F., Fauvarque M. O., de Vienne D., Vartanian N., Giraudat J. 1992. A Brassica napus transcript encoding a protein related to the Kunitz protease inhibitor family accumulates upon water stress in leaves, not in seeds. Plant J. 5: 685 — 693.
DOI: https://doi.org/10.1046/j.1365-313X.1992.t01-11-00999.x
Google Scholar
Enari T. M., Sopanen T. 1986. Mobilization of endosperm reserves during germination of barley. J. Inst. Brew. 92: 25 — 31.
DOI: https://doi.org/10.1002/j.2050-0416.1986.tb04371.x
Google Scholar
Fischer J., Becker C., Hillmer S., Horstmann C., Neubohn B., Schlereth A., Senyuk V., Shutov A., Muntz K. 2000. The families of papain- and legumain like cysteine proteinases from embryonic axes and cotyledons of Vicia seeds: developmental patterns, intercellular localization and functions in globulin proteolysis. Plant Mol. Biol. 48:83 — 101.
DOI: https://doi.org/10.1023/A:1006456615373
Google Scholar
Fukuda H. 1996. Xylogenesis: initiation, progression and cell death. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 299 — 325.
DOI: https://doi.org/10.1146/annurev.arplant.47.1.299
Google Scholar
Funk V., Kositsup B., Zhao Ch., Beers E. P. 2002. The arabidopsis xylem peptidase XCP1 is a tracheary element vacuolar protein that may be a papain ortholog. Plant Physiol. 128: 89 — 94.
DOI: https://doi.org/10.1104/pp.010514
Google Scholar
Greenberg J. T. 1996. Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. USA. 93: 12094 — 12097.
DOI: https://doi.org/10.1073/pnas.93.22.12094
Google Scholar
Grudkowska M., Wiśniewski K., Zagdańska B. 2001. Endoproteinazy cysteinowe w siewkach pszenicy zaaklimatyzowanych do niskiej temperatury i suszy. Streszczenia str. 300. XXXVII Zjazd P T Bioch. Toruń.
Google Scholar
Grudkowska M., Wiśniewski K., Zagdańska B. 2002 Aktywność endoproteinaz cysteinowych wskaźnikiem odporności siewek pszenicy ozimej na mróz i suszę. Biul. IHAR 223/224: 45 — 55.
Google Scholar
Guerrero C., Calle M., Reid M. S., Valpuesta V. 1998. Analysis of the expression of two thiolprotease genes from daylily (Hemerocallis spp.) during flower senescence. Plant Mol. Biol. 36:565 — 571.
DOI: https://doi.org/10.1023/A:1005952005739
Google Scholar
Guerrero F. D., Jones J. T., Mullet J. E. 1990. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol. Biol. 15: 11 — 26.
DOI: https://doi.org/10.1007/BF00017720
Google Scholar
Ho S. L., Tong W. F., Yu S. M. 2000. Multiple mode of regulation of cysteine proteinase gene expression in rice. Plant Physiol. 122: 57 — 66.
DOI: https://doi.org/10.1104/pp.122.1.57
Google Scholar
Holwerda B. C., Rogers J. C. 1992. Purification and characterization of aleurain Plant Physiol. 99: 848 — 855.
DOI: https://doi.org/10.1104/pp.99.3.848
Google Scholar
Huang Y-J., To K-Y., Yap M-N., Chiang W-J., Suen D-F., Chen S-C.G. 2001. Cloning and characterization of leaf senescence up-regulated genes in sweet potato. Physiol. Plant. 113: 384 — 391.
DOI: https://doi.org/10.1034/j.1399-3054.2001.1130312.x
Google Scholar
Ingram J., Bartels D. 1996. The molecular basis of dehydration tolerance in plant. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377 — 403.
DOI: https://doi.org/10.1146/annurev.arplant.47.1.377
Google Scholar
Ishii S. I. 1994. Legumain: asparaginyl endopeptidase. Methods Enzymol. 224: 604 — 615.
DOI: https://doi.org/10.1016/0076-6879(94)44044-1
Google Scholar
Jabs T., Dietrich R. A., Dangl J. L. 1996. Initiation of runway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853 — 1856.
DOI: https://doi.org/10.1126/science.273.5283.1853
Google Scholar
Jones J. T., Mullet J. E. 1995. A salt and dehydration- inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases. Plant Mol. Biol. 28: 1055 — 1065.
DOI: https://doi.org/10.1007/BF00032666
Google Scholar
Koehler S. M., Ho T. D. 1990. A major gibberellic acid-induced barley aleurone cysteine proteinase which digest hordein. Plant Physiol. 94: 251 — 258.
DOI: https://doi.org/10.1104/pp.94.1.251
Google Scholar
Koizumi M., Yamaguchi- Shinozaki K., Tsuji H., Shinozaki K. 1993. Structure and expression of two genes that encode distinct drought- inducible cysteine proteinases in Arabidopsis thaliana. Gene 129: 175 — 182.
DOI: https://doi.org/10.1016/0378-1119(93)90266-6
Google Scholar
Lam E., del Pozo O. 2000. Caspase-like protease involvement in the control of plant cell death. Plant Mol. Biol. 44: 417 — 428.
DOI: https://doi.org/10.1023/A:1026509012695
Google Scholar
Mittler R., Simon L., Lam E. 1997. Pathogen-induced programmed cell death in tobacco. J. Cell Sci. 110: 1333 — 1344.
DOI: https://doi.org/10.1242/jcs.110.11.1333
Google Scholar
Mlejnek P., Prochazka S. 2002. Activation of caspase-like proteases and induction of apoptosis by isopeptydyloadenosine in tobacco BY-2 cells. Planta 215: 158 — 166.
DOI: https://doi.org/10.1007/s00425-002-0733-5
Google Scholar
Müntz K. 1996. Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. J. Exp. Bot. 47: 605 — 622.
DOI: https://doi.org/10.1093/jxb/47.5.605
Google Scholar
Nishio N., Satoh H. 1997. A water soluble chlorophyll protein in cauliflower may be identical to BnD22, a drought- induced 22- kilodalton protein in rapeseed. Plant Physiol. 115: 841 — 846.
DOI: https://doi.org/10.1104/pp.115.2.841
Google Scholar
Pechan T., Ye L., Chang Y., Mitra A., Lin L., Davies F., Williams W., Luthe D. 2000. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell 12: 1031 — 1040.
DOI: https://doi.org/10.1105/tpc.12.7.1031
Google Scholar
Phillips H. A., Wallace W. 1989. A cysteine endopeptidase from barley malt which degrades hordein. Phytochem. 28 (12): 3285 — 3290.
DOI: https://doi.org/10.1016/0031-9422(89)80332-2
Google Scholar
Rawlings N. D., Barret A. J. 1993. Evolutionary families of peptidases. Biochem. 299: 205 — 218.
DOI: https://doi.org/10.1042/bj2900205
Google Scholar
Schaffer M. A., Fischer R. L. 1988. Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato. Plant Physiol. 87: 431 — 436.
DOI: https://doi.org/10.1104/pp.87.2.431
Google Scholar
Schaffer M. A., Fischer R. L. 1990 Transcriptional activation by heat an cold of a thiol protease gene in tomato. Plant Physiol. 93: 1486 — 1491.
DOI: https://doi.org/10.1104/pp.93.4.1486
Google Scholar
Schlereth A., Becker C., Horstmann C., Tiedemann J., Müntz K. 2000. Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J. Exp. Bot. 51: 1423 — 1433.
DOI: https://doi.org/10.1093/jexbot/51.349.1423
Google Scholar
Schlereth A., Standhardt D., Mock H.P., Müntz K. 2001. Stored cysteine proteinases start globulin mobilization in protein bodies of embryonic axes and cotyledons during vetch (Vicia sativa L.) seed germination. Planta 212: 718 — 727.
DOI: https://doi.org/10.1007/s004250000436
Google Scholar
Schmid M., Simpson D., Gietl Ch. 1999. Programmed cell death in castor beam endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc. Natl. Acad. Sci USA 96: 14159 — 14164.
DOI: https://doi.org/10.1073/pnas.96.24.14159
Google Scholar
Shewry P. R., Napier J. A., Tatham A. S. 1995. Seed storage proteins: structures and biosynthesis. Plant Cell 7: 945 — 956.
DOI: https://doi.org/10.1105/tpc.7.7.945
Google Scholar
Shutov A. D., Vaintraub I. A. 1987. Degradation of storage proteins in germinating seeds. Phytochem. 26: 1557 — 1566.
DOI: https://doi.org/10.1016/S0031-9422(00)82245-1
Google Scholar
Simpson D. J. 2001. Proteolytic degradation of cereal prolamins — the problem with proline. Plant Sci. 161: 825 — 838.
DOI: https://doi.org/10.1016/S0168-9452(01)00482-4
Google Scholar
Solomon M., Belenghi B., Delledonne M., Menachem E., Levine A. 1999. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plant. Plant Cell 11: 431 — 443.
DOI: https://doi.org/10.1105/tpc.11.3.431
Google Scholar
Tiedemann J., Schlereth A., Müntz K. 2001. Differential tissue- specific expression of cysteine proteinases forms the basis for the fine-tuned mobilization of storage globulin during and after germination in legume seeds. Planta 212: 728 — 738.
DOI: https://doi.org/10.1007/s004250000435
Google Scholar
Vincent J. L., Brewin N. J. 2000. Immunolocalization of cysteine protease in vacuoles, vesicles, and symbiosomes of pea nodule cells. Plant Physiol. 123: 521 — 530.
DOI: https://doi.org/10.1104/pp.123.2.521
Google Scholar
Wagstaff C., Leverentz M. K., Griffith G., Thomas B., Chanasut U., Stead A. D., Roger H. J. 2002. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. J. Exp. Bot. 53: 233 — 240.
DOI: https://doi.org/10.1093/jexbot/53.367.233
Google Scholar
Wiśniewski K., Zagdańska B. 2001. Genotype- dependent proteolytic response of spring wheat to water deficiency. J. Exp. Bot. 52: 1455 — 1463.
DOI: https://doi.org/10.1093/jexbot/52.360.1455
Google Scholar
Xu Y., Hanson R. 2000. Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiol. 122: 1323 — 1333.
DOI: https://doi.org/10.1104/pp.122.4.1323
Google Scholar
Zagdańska B., Wiśniewski K. 1996. Endoproteinase activities in wheat leaves upon water deficit. Acta Biochim. Polon. 43: 515 — 520.
DOI: https://doi.org/10.18388/abp.1996_4485
Google Scholar
Zhang N., Jones B. L. 1996. Purification and partial characterization of a 31-kDa cysteine endopeptidase from germinated barley. Planta 199: 565 — 572.
DOI: https://doi.org/10.1007/BF00195188
Google Scholar
Zhao C., Johnson B. J., Kositsup B., Beers E. P. 2000. Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases. Plant Physiol. 123: 1185 — 1196.
DOI: https://doi.org/10.1104/pp.123.3.1185
Google Scholar
Authors
Małgorzata Grudkowskam.grudkowska@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie Poland
Authors
Barbara ZagdańskaZakład Biochemii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Poland
Statistics
Abstract views: 6PDF downloads: 3
License
Copyright (c) 2002 Małgorzata Grutkowska, Barbara Zagdańska

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Janusz Bogdan, Barbara Zagdańska, Drought resistance of spring wheat during germination and seedling growth , Bulletin of Plant Breeding and Acclimatization Institute: No. 233 (2004): Regular issue
- Małgorzata Grutkowska, Barbara Zagdańska, Zbigniew Rybka, Tolerance of spring wheat to soil drought at a heading phase , Bulletin of Plant Breeding and Acclimatization Institute: No. 228 (2003): Regular issue
- Małgorzata Grudkowska, Krzysztof Wiśniewski, Barbara Zagdańska, Cysteine endoproteinases activity as an indicator of wheat resistance to frost and drought , Bulletin of Plant Breeding and Acclimatization Institute: No. 223/224 (2002): Regular Issue
- `, Lucjan Madej, Yield structure of some rye inbred lines , Bulletin of Plant Breeding and Acclimatization Institute: No. 218/219 (2001): Regular Issue
- Barbara Zagdańska, Mechanisms of protein degradation and their role in plant resistance to frost and drought , Bulletin of Plant Breeding and Acclimatization Institute: No. 218/219 (2001): Regular Issue








