Bread-making quality of introgressive forms of winter wheat (Triticum aestivum L.)

Józef Pilch

j.pilch@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin, Oddział w Krakowie (Poland)

Abstract

Bred-making quality of grain of 76 winter introgressive lines derived from interspecific and intergeneric crosses of wheat T. aestivum L. with T. durum Desf. v. Mirable, Khapli Fuensemiduro, T. timopheevii Zhukov. v. 5013, 5030, Taush., and L. perenne L. v. Anna was investigated during three years.The lines were selected out of 1165 wide-hybrids on the basis of high protein content (%), sedimentation value (ml), falling number (s) and baking value of the classes E (Exclusive) and A (Qualitative) in the relation to variety Begra according to Klockiewicz-Kamińska i Brzeziński (1997). Retaining of very high values of the technological indicators which exceeded the quality check T. aestivum L. (the class E) point out the effects of the introgression of the genes of the genomes A and B of T. durum Desf., T. timopheevii Zhukov., Ae. speltoides Taush., the genome G of T. timopheevii Zhukov. and the genome L of L. perenne L. The identified lines may in the future constitute the initial material for developing the genetic sources for the quality breeding of winter wheat.

 

Keywords:

T. aestivum L., introgression, wheat, grain, bread-making quality

Ahmad M., Arain M. A., Siddiqui K. A. 1997. Screening of Aegilops, Triticum and Hordeum species for grain weight protein and lysine content. Wheat Inf. Service. No. 85: 7 — 13.
Google Scholar

Anderson W.K., Shakley B.J., Sawkins D. 1998. Grain yield and quality: does there have to be a trade-off. Euphytica 100: 183 — 188. DOI: https://doi.org/10.1023/A:1018326006069
Google Scholar

Blanco A., Bellomo M. P., Lotti C., Pasquolone A. 1998. Mapping of quantitative trait loci for grain quality using recombinant inbred lines of durum wheat. Proc. of the 10th EWAC Meeting, Viterbo, Italy (Ed. C. Ceoloni, Worland A. J.): 106 — 109.
Google Scholar

Branlard G., Dardevet M. 1985. Diversity of grain protein and bread wheat quality. II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J. Cereal Sci.3: 345 — 354. DOI: https://doi.org/10.1016/S0733-5210(85)80007-2
Google Scholar

Bushuk W., 1998. Wheat breeding for end-product use. Euphytica 100: 137 — 145. DOI: https://doi.org/10.1023/A:1018368316547
Google Scholar

Carrillo J. M., Rousset M., Qualset C. O., Kasarda D. D. 1990. Use of recombinant inbred lines of wheat for study of associations of high-molecular weight glutenin subunit alleles to quantitative traits. I. Grain yield and quality prediction tests. Theor. Appl. Genet. 73: 321 — 330. DOI: https://doi.org/10.1007/BF01186074
Google Scholar

Dexter J. E., Matsuo R. R. 1987. Relationship between durum wheat properties and pasta dough rheology and spaghetti cooking quality. J. Agric. Food. Chem. 26: 899 — 905. DOI: https://doi.org/10.1021/jf60231a034
Google Scholar

Dong H., Cox T. S., Sears R. G., Lockhard G. L. 1991. High molecular weight glutenin genes: Effects on quality in wheat. Crop Sci. 31: 971 — 979. DOI: https://doi.org/10.2135/cropsci1991.0011183X003100040027x
Google Scholar

D’Ovidio R., Tanzarella O. A., Masci S., Lafiandra D., Porceddu E. 1992. RFLP and PCR analyses at Gli-1, Gli-2, Glu-1 and Glu-3 loci in cultivated and wild wheats. Hereditas 116: 79 — 85. DOI: https://doi.org/10.1111/j.1601-5223.1992.tb00803.x
Google Scholar

Ekiz H., Safi Kinal A., Akain A., Simsek L. 1998. Cytoplasmic effects on quality traits of bread wheat (Triticum aestivum L.). Euphytica 100: 189 — 196. DOI: https://doi.org/10.1023/A:1018382106978
Google Scholar

Finney K. F. 1978. Genetically high protein hard winter wheat. Bakers Dig. 52: 32.
Google Scholar

Flavell R., Payne P. 1987. Introducing molecular biology into wheat breeding for better bread making quality. Biotechnology in Agriculture: 14 — 15.
Google Scholar

Grama A., Wright D. C. S., Gressey P. J., Lindley T. 1987. Hexaploid wild emmer wheat derivatives grown under New Zealand condition. 1. Relationship between protein composition and quality parameters. J. Agric. Res. 30: 35 — 43. DOI: https://doi.org/10.1080/00288233.1987.10430475
Google Scholar

Halloran G. M. 1975. Genetic analysis of grain protein percentage in wheat. Theor. Appl. Genet. 46: 79 — 86. DOI: https://doi.org/10.1007/BF00281646
Google Scholar

Hsam S. L. K., Kieffer R., Zeller F. J. 2001. Significance of Aegilops tauschii glutenin genes on bread making properties of wheat. Cereal Chem. 78 (5): 521 — 525. DOI: https://doi.org/10.1094/CCHEM.2001.78.5.521
Google Scholar

Johnson V. A., Mattern P. J., Peterson C. J., Kuhr S. L. 1985. Improvement of wheat protein by traditional breeding and genetic techniques. Cereal Chem. 62 (5): 350 — 355.
Google Scholar

Klockiewicz-Kamińska E., Brzeziński W. J. 1997. Metoda oceny i klasyfikacji jakościowej odmian pszenicy. Wiad. Odm. COBORU, 67: 1 — 18.
Google Scholar

Krattiger A. F., Payne P. I., Law C. N. 1987. The relative contribution of proteins and other components to bread making quality of varieties determined using chromosome substitution lines. Proc. 3rd Int. Workshop Gluten Proteins, Budapest-Hungary: 254 — 265.
Google Scholar

Lagudah E. S., O”Brien L. Halloran G. M. 1988. Influence of gliadin composition and high molecular weight subunits of glutenin on dough properties in an F 3 population of a bread wheat cross. J. Creal Sci. 7: 33 — 42. DOI: https://doi.org/10.1016/S0733-5210(88)80057-2
Google Scholar

Lawrence G. J., Moss H. J., Shepherd K. W., Wrigley C.W. 1987. Dough quality of biotypes of eleven Australian wheat cultivars that differ in high-molecular-weight glutenin subunit composition. J. Cereal. Sci. 6: 99 — 101. DOI: https://doi.org/10.1016/S0733-5210(87)80045-0
Google Scholar

Lawrence G. J., Mac Ritchie F. Wrigley C. W. 1988. Dough and baking quality of wheat lines deficient in glutenin subunit scontrolled by the Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal Sci. 7: 109 — 112. DOI: https://doi.org/10.1016/S0733-5210(88)80012-2
Google Scholar

Levy A. A., Feldman M. 1987. Increase in grain protein percentage in high-yielding common wheat breeding lines by genes from wild tetraploid wheat. Euphytica 36: 353 — 359. DOI: https://doi.org/10.1007/BF00041478
Google Scholar

Little T. M., Hills F. J. 1975. Statistical methods in agricultural research. 2nd ed. (eds. T. M. Little F. J. Hills, Univ. California, Davis.
Google Scholar

Lorenzo A., Kronstad W. E., Vieira L. C. E. 1987. Relationship between high molecular weight glutenin subunits and loaf volume in wheat as measured by the sodium dodecyl sulfate sedimentation test. Crop Sci. 27: 253 — 257. DOI: https://doi.org/10.2135/cropsci1987.0011183X002700020026x
Google Scholar

MacRitchie F., DuCros D. L., Wrigley C. W. 1990. Flour polipeptides related to wheat quality. Adv. In Cereal Sci. and Tech. (Ed. Y.Pomeranz, Am. Assoc. of Cereal Chem., USA), vol. 10: 79 — 146.
Google Scholar

Mansur L. M., Qualset C. O., Kasarda D. D., Morris R. 1990. Effects of “Cheyenne“ chromosomes on milling and baking quality of “Chinese Spring“ wheat in relation to glutenin and gliadin storage proteins. Crop Sci. 30: 35 — 47. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000030026x
Google Scholar

MirAli N., Arabi M. I. E. Al-Safadi B. 1999. High molecular weight glutenin subunits composition of Syrian grown bread wheat and its relationships with gluten strength. J. Genet. Breed. 53: 237 — 245.
Google Scholar

Nieto-Taladriz M. T., Perretant M. R., Rousset M. 1994. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F 6 recombinant inbred lines from a bread wheat cross. Theor. Appl. Genet. 88: 81 — 88. DOI: https://doi.org/10.1007/BF00222398
Google Scholar

Odenbach W., Mahgoub E. S. 1988. Relationships between HMW glutenin subunit composition and the sedimentation value in reciprocal sets of inbred backcross lines derived from two winter wheat crosses. Proc. 7th Int. Wheat Genet. Symp., Cambridge (England): 987 — 991.
Google Scholar

Payne P. J., Nightingale M. A., Krattiger A. F., Holt L. M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food. Agric. 40: 51 — 65. DOI: https://doi.org/10.1002/jsfa.2740400108
Google Scholar

Peńa R. J., Zarco-Hernandez J, Mujeeb-Kazi A. 1995. Glutenin subunit composition and bread-making quality characteristics of syntetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii (Coss) Schmal crosses. J. Cereal Sci. 21: 15 — 23. DOI: https://doi.org/10.1016/S0733-5210(95)80004-2
Google Scholar

Pilch J. 1996. Performance of interspecific and intergeneric hybrids of Triticum aestivum L. for wheat improvements. Part II. Breeding value of spring-type generations F6–F10 of T. aestivum L. with Triticum (2x, 4x), Aegilops (2x, 4x), Secale (2x) and Hordeum (2x) species in respect of some characters of spike. Plant Breed. Seed Sci. 41/1: 3 — 15.
Google Scholar

Pilch J., Głowacz E., Cygankiewicz A. 1999. Wartość wypiekowa ziarna mieszańców pszenicy pochodzących z krzyżowań międzygatunkowych i międzyrodzajowych. Biul. IHAR 210: 71 — 83.
Google Scholar

Pilch J. 2002. Transformacje genomu pszenicy Triticum aestivum L. z wykorzystaniem międzygatunkowej i międzyrodzajowej hybrydyzacji (w druku).
Google Scholar

Glu-A1 encoding two high-molecular-weight Redaelli R., Pogna N.E., Ng P.K. 1997. Effects of prolamins encoded by chromosomes 1B and 1D on the rheological properties of dough in near-isogenic lines of bread wheat. Cereal Chem. 74: 102 — 107. DOI: https://doi.org/10.1094/CCHEM.1997.74.2.102
Google Scholar

Rogers W. J., Law C. N., Sayers E. J. 1988. Dosage effects of homoeologous group 1 chromosomes upon the breadmaking quality of hexaploid wheat. Proc.7 th Int. Wheat Genet. Symp., Cambridge (England): 1003 — 1008.
Google Scholar

Rogers W. J., Miller T. E., Payne P. I., Seekings J. A., Sayers E. J., Holt L. M., Law C. N. 1997. Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss ssp. Thaoudar at subunuts of glutenin. Euphytica 93: 19 — 27. DOI: https://doi.org/10.1023/A:1002991206350
Google Scholar

Schepers J., Keizer L.C.P., Kolster P. 1993. The relation between high molecular weight glutenin subunits, bread-making qualityand agronomic properties of winter wheat. Cereal Res. Commun. 21, No.4: 289 — 296.
Google Scholar

Sekiguchi S., Ono J., Taira T. 1993. Detection of HMW glutenin genes by DNA hybridization and breadbaking quality of amphidiploid synthesized between Aegilops squarrosa and Secale cereale. Wheat Inf. Serv. 76: 77 — 79.
Google Scholar

Sutton K. H., Hay R. L., Mouat C. H. 1992. The effect of kernel weight on the assessment of baking performance of wheat by RP-HPLC of glutenin subunits from single grains. J. Cereal Sci. 15: 253 — 265. DOI: https://doi.org/10.1016/S0733-5210(09)80123-9
Google Scholar

Uhlen A.K. 1990. The compositionof high molecular weight glutenin subunits in Norwegian wheats and their relation to bread-making quality. Norweg. J. Agric. Sci. 4: 1 — 17.
Google Scholar

Wieser H., Zimmermann G. 2000. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. Eur. Food Res. Technol. 210: 324 — 330. DOI: https://doi.org/10.1007/s002170050558
Google Scholar

Vallega V. 1992. Agronomic performance and breeding value of selected strains of diploid wheat Triticum monococcum. Euphytica 16: 13 — 23. DOI: https://doi.org/10.1007/BF00035542
Google Scholar


Published
2002-12-31

Cited by

Pilch, J. (2002) “Bread-making quality of introgressive forms of winter wheat (Triticum aestivum L.) ”, Bulletin of Plant Breeding and Acclimatization Institute, (223/224), pp. 95–109. doi: 10.37317/biul-2002-0008.

Authors

Józef Pilch 
j.pilch@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin, Oddział w Krakowie Poland

Statistics

Abstract views: 6
PDF downloads: 3


License

Copyright (c) 2002 Józef Pilch

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)