Biosensors – novel analytical tools for the plant pathogen detection
Małgorzata Łabańska
m.labanska@ihar.edu.plInstytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie (Poland)
http://orcid.org/0000-0002-1659-8129
Włodzimierz Przewodowski
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie (Poland)
http://orcid.org/0000-0002-4456-4727
Abstract
Crop protecting plays a key role in increasing the efficiency of plant production. So far, a number of methods dedicated to the identification of plant pathogens have been developed. The most important of them are molecular methods employed polymerase chain reaction – PCR and immunological methods based on specific interactions of antibodies with antigens. However, current methodologies are time-consuming, expensive, require complex laboratory equipment, are being not suitable for in-vivo plant pathogen detection. Therefore there is a strong need to develop alternative, low-cost, rapid and with high specificity methods for the detection of plant pathogens which would enable diagnostics both in laboratory and environmental conditions. Over the years biosensors are gaining increasing attention due to their wide range of applications. High sensitivity and selectivity, the possibility of real-time measurements, and often small sizes make them extremely attractive analytical tools. In this work the conventional methods of the plant pathogens identification as well as the structure, principle of operation and a wide range of applications of biosensors are described. Special attention was paid to electrochemical and optical biosensors including as sensing elements antibodies – immunosensors or fragments of nucleic acids – DNA sensors designed for the detection of plant pathogens.
Supporting Agencies
Keywords:
biosensors, DNA-biosensors, immunosensors, plant pathogens detectionReferences
Boltovets, P.M., Boyko, V.R., Kostikov, I.Y., Dyachenko, N.S., Snopok, B.A., Shirshov, Y.M. (2002). Simple method for plant virus detection: effect of antibody immobilization technique J. Virol. Methods 105, 141–146.
Google Scholar
Brzózka, Z., Wróblewski, W. (1999) Sensory elektrochemiczne W: Z. Brzózka, W. Wróblewski (red), Sensory chemiczne (21‒74). Warszawa. Oficyna Wyd. Politechniki Warszawskiej,
Google Scholar
Cesarino, I., Moraes, F.C., Lanza, M.R.V., Machado, S.A.S. (2012). Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem. 135, 873–879
Google Scholar
Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., Valdes, J.J. (2008). Biosensor Recognition Elements. Curr. Issues Mol. Biol. 10, 1–12.
Google Scholar
Charlermroj, R., Himananto, O., Seepiban, C., Kumpoosiri, M., Warin, N., Oplatowska,
Google Scholar
M., Gajanandana, O., Grant, I.R., Karoonuthaisiri, N., Elliott, C.T. (2013). Multiplex Detection of Plant Pathogens Using a Microsphere Immunoassay Technology PloS One 8, e62344.
Google Scholar
Cynk P., Gaweł E. (2012). Zastosowanie biosensorów w diagnostyce choroby nowotworowej. Prz. Med. Uniw. Rzesz. Inst. Leków 3, 373‒378
Google Scholar
Cunningham, J.C., Scida, K., Kogan, M.R., Wang, B., Ellington, A.D., Crooks, R.M. (2015). Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab. Chip 15, 3707–3715
Google Scholar
Damborsky, P., Svitel, J., Katrlik, J. (2016). Optical biosensors, Essays. Biochem. 60, 91–100.
Google Scholar
Drygin, Y.F., Blintsov, A.N., Grigorenko, V.G., Andreeva, I.P., Osipov, A.P., Varitzev, Y.A.,
Google Scholar
Uskov, A.I., Kravchenko, D.V., Atabekov, J.G. (2012). Highly sensitive field test lateral flow immunodiagnostics of PVX infection Appl. Microbiol. Biotech. 93, 179–189.
Google Scholar
Eguilaz, M., Moreno-Guzman, M., Campuzano, S., González-Cortes, A., Yanez-Sedeno, P., Pingarron, J.M. (2010). An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosen. Bioelectron. 26, 517–522
Google Scholar
Fang, Y., Ramasamy, R.P. (2015). Current and prospective methods for plant disease detection. Biosensors, 4, 537‒561.
Google Scholar
Farzin, L., Shamsipur, M., Samandari, L., Sheibani, S. (2020). HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta. 206, 120201.
Google Scholar
Felix, F. B., Angnes, L. (2018). Electrochemical immunosensors – a powerful tool for analytical applications. Biosens. Bioelectron., 102, 470‒478
Google Scholar
Grieshaber, D., MacKenzie, R., Voros, J., Reimhult, E. (2008). Electrochemical Biosensors – sensor principles and architectures. Sensors 8, 1400‒1458
Google Scholar
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food Security: The challenge of feeding 9 billion people. Science, 327, 812‒818.
Google Scholar
Gumpu, M.B., Sethuraman, S., Krishnan, U.M., Rayappan, J.B.B. (2015). A review on detection of heavy metal ions in water – An electrochemical approach. Sens. Actuators B. Chem. 213, 515‒533
Google Scholar
Hao, R.Z., Wang, D.B., Zhang, X.E., Zuo, G.M., Wei, H.P., Yang, R.F., Zhang, Z.P., Cheng, Z.X., Guo, Y.C., Cui, Z.Q. (2009). Rapid detection of bacillus anthracis using monoclonal antibody functionalized QMC sensor. Biosens. Bioelectron., 24, 1330–1335
Google Scholar
Huang, X., Xu, J., Ji, H.F., Li, G., Chen, H., (2014). Quartz crystal microbalance based biosensor for rapid and sensitive detection of Maize Chlorotic Mottle Virus. Anal. Methods, 6, 4530–4536
Google Scholar
Jarocka, U., Radecka, H., Malinowski, T., Michalczuk, L., Radecki, J. (2013). Detection of Prunus Necrotic Ringspot Virus in plant extracts with impedimetric immunosensor based on glassy carbon electrode. Electroanalysis, 25, 433–438
Google Scholar
Jarocka, U., Wąsowicz, M., Radecka, H., Malinowski, T., Michalczuk, L., Radecki, J. (2011). Impedimetric Immunosensor for Detection of Plum Pox Virus in Plant Extracts. Electroanalysis, 23, 2197‒2204.
Google Scholar
Jiao K., Sun W., Zhang S-S. (2000). Sensitivie detection of plant virus by electrochemical enzyme-linked immunoassay. Fresenius J. Anal. Chem. 367, 667‒671.
Google Scholar
Khater, M., de la Escosura-Muniz, A., Merkoci, A. (2017). Biosensors for plant pathogen detection. Biosens. Bioelectron., 93, 72‒86.
Google Scholar
Kim, J., Campbell, A. S., Esteban-Fernández de Ávila, B., Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389‒406
Google Scholar
Kłos – Witkowska, A. (2014). Ewolucja i rozwój biosensorów – problemy i perspektywy. PAK, 60, 1178‒1180.
Google Scholar
Kłos – Witkowska, A. (2015). Biosensory. PAK, 19, 37‒40.
Google Scholar
Kokkinos, C., Economou, A., Prodromidis, M. I. (2016). Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. Trends Anal. Chem. 79, 88‒105
Google Scholar
Kołwzan, B. (2009). Zastosowanie czujników biologicznych (biosensorów) do oceny jakości wody – Ochrona środowiska 4, 3‒14
Google Scholar
Lazcka, O., Del Campo, F. J., Munoz, F.X. (2007). Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron., 22, 1205‒1217
Google Scholar
Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., O’Kennedy, R. (2003). Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Tech., 32, 3‒13.
Google Scholar
Lichtfouse, E., Navarrete, M., Debaeke, P., Souchere, V., Alberola, C., Menassieu, J. (2009). Agronomy for sustainable agriculture. A review. Agron. Sustain. Dev., 29, 1‒6.
Google Scholar
Lin, H.Y., Huang, C.H., Lu, S.H., Kuo, I.T., Chau, L.K., (2014). Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens. Bioelectron. 51, 371–378.
Google Scholar
Luna-Moreno, D., Sanchez-Alvarez, A., Islas-Flores, I., Canto-Canche, B., Carrillo-Pech, M., Villarreal-Chiu, J.F., Rodríguez-Delgado, M. (2019). Early detection of the Fungal Banana Black Sigatoka Pathogen Pseudocercospora fijiensis by an SPR Immunosensor Method. Sensors 19, 465‒477.
Google Scholar
Magner, E. (2013). Biosensory elektrochemiczne – możliwości i ograniczenia komercjalizacji. Chemik. 67, 11‒13.
Google Scholar
Malecka, K., Michalczuk, L., Radecka, H., Radecki, J., (2014). Ion-channel genosensor for the detection of specific DNA sequences derived from Plum Pox Virus in plant extracts. Sensors, 14, 18611–18624.
Google Scholar
Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R., Davis, C.E., Dandekar, A.M. (2015) Advanced methods of plant disease detection. A review. Agron. Sustain. Dev., 35, 1‒25.
Google Scholar
Mendes, R.K, Laschi, S, Stach-Machado, D.R., Kubota L.T., Marrazza G. (2012) A disposable voltammetric immunosensor based on magnetic beads for early diagnosis of soybean rust. Sens. Actuators B Chem 166–167, 135–140.
Google Scholar
Perumal, V., Hashim, U. (2014). Advances in biosensors: principle, architecture and applications, J. Appl. Bio-med. 12, 1‒15.
Google Scholar
Przewodowski, W., Barnyk, A. (2009). Szybki test do identyfikacji bakterii Clavibacter michi-ganensis ssp. sepedonicus. Post. Ochr. Rośl. 49, 696‒700.
Google Scholar
Pultar, J. (2009). Aptamer–antibody on-chip sandwich immunoassay for detection of CRP in spiked serum – Biosens. Bioelectron., 24, 1456–1461
Google Scholar
Pundira, C.S., Malik, A., Pretty, M. (2019) Bio-sensing of organophosphorus pesticides: A review Biosens. Bioelectron. 140, 11134
Google Scholar
Radecki, J., Radecka, H., Cieśla, J. (2006). Sensory i biosensory w kontroli żywności modyfikowanej genetycznie, Biotechnol. 3, 67‒78
Google Scholar
Salamońska, K., Stochła, W., Przewodowski, W. (2016). Nowoczesne metody diagnostyczne w identyfikacji molekularnej bakterii kwarantannowych ziemniaka. Ziemn. Pol., 4, 41‒45.
Google Scholar
Savary, S., Ficke, A., Aubertot, J-N., Hollier C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Sec., 4, 519‒537
Google Scholar
Sankiewicz, A., Puzan, B., Gorodkiewicz E. (2014). Bioczujniki SPRI – narzędzia diagnostyczne przyszłości. Chemik 68, 528‒535
Google Scholar
Schwenkbier, L., Pollok, S., König, S., Urban, M., Werres, S., Cialla-May, D., Weber, K., Popp, J., (2015). Towards on-site testing of Phytophthora species. Anal. Methods 7, 211–217
Google Scholar
Shi, J.Y., Guo, J.B., Bai, G.X., Chan, C.Y., Liu, X., Ye, W.W., Hao, J.H., Chen, S., Yang, M. A. (2015). Graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin a (BoNT/A) enzymatic activity. Biosens. Bioelectron. 65, 238–244
Google Scholar
Skottrup, P., Nicolaisen, M., Justesen, A.F., (2007). Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J. Microbiol. Methods 68, 507–515
Google Scholar
Stochła W., Przewodowski, W., Przewodowska, A., Salamońska, K. (2017). Immunodiagnostyczne metody wykrywania i identyfikacji bakteryjnych patogenów ziemniaka – Ziemn. Pol., 1, 14‒21.
Google Scholar
Thevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S. (2001). Electrochemical biosensors: recommended definitions and classification – Biosens. Bioelectron. 16, 121‒131
Google Scholar
Tilman, D., Balzer C., Hill, J., Befort, B.L. (2011). Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 108, 20260‒20264.
Google Scholar
Wang, J. (2008). Electrochemical glucose biosensors. Chem. Rev. 108, 814‒825
Google Scholar
Zezza, F., Pascale, M., Mulè, G., Visconti, A., (2006). Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. J. Microb. Methods 66 (3), 529–537
Google Scholar
Zhao, Y., Liu, L., Kong, D., Kuang, H., Wang, L., Xu, C. (2014). Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii ACS Appl. Mater. Interfaces, 6, 21178–21183.
Google Scholar
Zhao, W., Lu, J., Ma, W., Xu, C., Kuang, H., Zhu, S., (2011). Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosens. Bioelectron. 26, 4241–4244
Google Scholar
Zhou, J., Qi Q., Wang, C., Qian, Y., Liu, G., Wang, Y., Fu, L. (2019). Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices – Biosens. Bioelectron. 142, 111449
Google Scholar
Authors
Małgorzata Łabańskam.labanska@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie Poland
http://orcid.org/0000-0002-1659-8129
Authors
Włodzimierz PrzewodowskiInstytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie Poland
http://orcid.org/0000-0002-4456-4727
Statistics
Abstract views: 834PDF downloads: 545
License
Copyright (c) 2020 Małgorzata Łabańska, Włodzimierz Przewodowski
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Dorota Michałowska, Agnieszka Przewodowska, Włodzimierz Przewodowski, Oksana Olejnik, Joanna Piskorz, Bank Genów Ziemniaka in vitro w Boninie , Bulletin of Plant Breeding and Acclimatization Institute: No. 290 (2020): Special issue
- Włodzimierz Przewodowski, Katarzyna Salamońska, Dorota Szarek, Dorota Michałowska, Wioleta Stochła, Agnieszka Przewodowska, Grzegorz Gryń, Milena Pietraszko, Katarzyna Franke, Research and development of selective isolation and sensitive identification methods of Clavibacter michiganensis ssp. sepedonicus bacteria in difficult diagnostic environmental samples , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Dorota Michałowska, Agnieszka Przewodowska, Włodzimierz Przewodowski, Paulina Buryło , Elimination of non-quarantine pathogens (viruses and endophytic bacteria) and control of potato plantlets healthiness in the in vitro bank , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Agnieszka Barnyk, Jerzy Lewosz, Krzysztof Treder, Włodzimierz Przewodowski, Tomasz Pilecki, Application of thiophilic chromatography for purification of polyclonal antibodies from rabbit serum , Bulletin of Plant Breeding and Acclimatization Institute: No. 248 (2008): Regular issue
- Włodzimierz Przewodowski, Jerzy Lewosz, Krzysztof Treder, Agnieszka Barnyk, Tomasz Pilecki, Identification of potato cultivars with an electrophoretic method , Bulletin of Plant Breeding and Acclimatization Institute: No. 243 (2007): Regular issue
- Milena Pietraszko, Grzegorz Gryń, Teresa Pastuszewska, Włodzimierz Przewodowski, Agnieszka Przewodowska, Susceptibility of potato cultivars to infection by bacteria Clavibacter michiganensis subsp. sepedonicus in different soil conditions , Bulletin of Plant Breeding and Acclimatization Institute: No. 277 (2015): Regular issue