Biosensory – nowoczesne narzędzia analityczne do detekcji patogenów roślinnych

Małgorzata Łabańska

m.labanska@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie (Poland)
http://orcid.org/0000-0002-1659-8129

Włodzimierz Przewodowski


Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie (Poland)
http://orcid.org/0000-0002-4456-4727

Abstrakt

Ochrona upraw przed chorobami pełni kluczową rolę w zwiększaniu efektywności produkcji roślinnej. Do tej pory opracowano szereg metod dedykowanych identyfikacji patogenów roślinnych. Najważniejsze z nich to metody molekularne wykorzystujące reakcję łańcuchowej polimerazy DNA – PCR (ang. Polymerase Chain Reaction) oraz metody immunologiczne bazujące na specyficznych oddziaływaniach przeciwciał z odpowiadającymi im antygenami. Jednak wiele z konwencjonalnych metod są czaso- i kosztochłonne, wymagają złożonych urządzeń laboratoryjnych oraz nie są dostosowane do przeprowadzania analiz w warunkach polowych. Z tego względu poszukiwane są, szybsze, tańsze metody detekcji patogenów roślinnych, które pozwoliłby na diagnostykę zarówno w warunkach laboratoryjnych jak i środowiskowych. Od wielu lat biosensory cieszą się niesłabnącym zainteresowaniem jako urządzenia o szerokim potencjale aplikacyjnym. Wysoka czułość i selektywność, możliwość pomiarów w czasie rzeczywistym, a także często niewielkie rozmiary czynią je niezwykle atrakcyjnymi narzędziami analitycznymi. W pracy przedstawiono rutynowe metody identyfikacji patogenów roślinnych, a także budowę, zasadę działania oraz szeroki zakres zastosowań biosensorów. Szczególną uwagę poświęcono elektrochemicznym oraz optycznym biosensorom zawierającym w warstwie receptorowej przeciwciała – immunosensory lub fragmenty kwasów nukleinowych – sensory DNA zaprojektowanym do detekcji patogenów roślinnych.

Instytucje finansujące

Praca powstała w wyniku realizacji projektu badawczego MINIATURA 3 Nr DEC-2019/03/X/NZ9/01197 finansowanego ze środków Narodowego Centrum Nauki

Słowa kluczowe:

biosensory, detekcja patogenów roślinnych, DNA-biosensory, immunosensory

Boltovets, P.M., Boyko, V.R., Kostikov, I.Y., Dyachenko, N.S., Snopok, B.A., Shirshov, Y.M. (2002). Simple method for plant virus detection: effect of antibody immobilization technique J. Virol. Methods 105, 141–146.
Google Scholar

Brzózka, Z., Wróblewski, W. (1999) Sensory elektrochemiczne W: Z. Brzózka, W. Wróblewski (red), Sensory chemiczne (21‒74). Warszawa. Oficyna Wyd. Politechniki Warszawskiej,
Google Scholar

Cesarino, I., Moraes, F.C., Lanza, M.R.V., Machado, S.A.S. (2012). Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem. 135, 873–879
Google Scholar

Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., Valdes, J.J. (2008). Biosensor Recognition Elements. Curr. Issues Mol. Biol. 10, 1–12.
Google Scholar

Charlermroj, R., Himananto, O., Seepiban, C., Kumpoosiri, M., Warin, N., Oplatowska,
Google Scholar

M., Gajanandana, O., Grant, I.R., Karoonuthaisiri, N., Elliott, C.T. (2013). Multiplex Detection of Plant Pathogens Using a Microsphere Immunoassay Technology PloS One 8, e62344.
Google Scholar

Cynk P., Gaweł E. (2012). Zastosowanie biosensorów w diagnostyce choroby nowotworowej. Prz. Med. Uniw. Rzesz. Inst. Leków 3, 373‒378
Google Scholar

Cunningham, J.C., Scida, K., Kogan, M.R., Wang, B., Ellington, A.D., Crooks, R.M. (2015). Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab. Chip 15, 3707–3715
Google Scholar

Damborsky, P., Svitel, J., Katrlik, J. (2016). Optical biosensors, Essays. Biochem. 60, 91–100.
Google Scholar

Drygin, Y.F., Blintsov, A.N., Grigorenko, V.G., Andreeva, I.P., Osipov, A.P., Varitzev, Y.A.,
Google Scholar

Uskov, A.I., Kravchenko, D.V., Atabekov, J.G. (2012). Highly sensitive field test lateral flow immunodiagnostics of PVX infection Appl. Microbiol. Biotech. 93, 179–189.
Google Scholar

Eguilaz, M., Moreno-Guzman, M., Campuzano, S., González-Cortes, A., Yanez-Sedeno, P., Pingarron, J.M. (2010). An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosen. Bioelectron. 26, 517–522
Google Scholar

Fang, Y., Ramasamy, R.P. (2015). Current and prospective methods for plant disease detection. Biosensors, 4, 537‒561.
Google Scholar

Farzin, L., Shamsipur, M., Samandari, L., Sheibani, S. (2020). HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta. 206, 120201.
Google Scholar

Felix, F. B., Angnes, L. (2018). Electrochemical immunosensors – a powerful tool for analytical applications. Biosens. Bioelectron., 102, 470‒478
Google Scholar

Grieshaber, D., MacKenzie, R., Voros, J., Reimhult, E. (2008). Electrochemical Biosensors – sensor principles and architectures. Sensors 8, 1400‒1458
Google Scholar

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food Security: The challenge of feeding 9 billion people. Science, 327, 812‒818.
Google Scholar

Gumpu, M.B., Sethuraman, S., Krishnan, U.M., Rayappan, J.B.B. (2015). A review on detection of heavy metal ions in water – An electrochemical approach. Sens. Actuators B. Chem. 213, 515‒533
Google Scholar

Hao, R.Z., Wang, D.B., Zhang, X.E., Zuo, G.M., Wei, H.P., Yang, R.F., Zhang, Z.P., Cheng, Z.X., Guo, Y.C., Cui, Z.Q. (2009). Rapid detection of bacillus anthracis using monoclonal antibody functionalized QMC sensor. Biosens. Bioelectron., 24, 1330–1335
Google Scholar

Huang, X., Xu, J., Ji, H.F., Li, G., Chen, H., (2014). Quartz crystal microbalance based biosensor for rapid and sensitive detection of Maize Chlorotic Mottle Virus. Anal. Methods, 6, 4530–4536
Google Scholar

Jarocka, U., Radecka, H., Malinowski, T., Michalczuk, L., Radecki, J. (2013). Detection of Prunus Necrotic Ringspot Virus in plant extracts with impedimetric immunosensor based on glassy carbon electrode. Electroanalysis, 25, 433–438
Google Scholar

Jarocka, U., Wąsowicz, M., Radecka, H., Malinowski, T., Michalczuk, L., Radecki, J. (2011). Impedimetric Immunosensor for Detection of Plum Pox Virus in Plant Extracts. Electroanalysis, 23, 2197‒2204.
Google Scholar

Jiao K., Sun W., Zhang S-S. (2000). Sensitivie detection of plant virus by electrochemical enzyme-linked immunoassay. Fresenius J. Anal. Chem. 367, 667‒671.
Google Scholar

Khater, M., de la Escosura-Muniz, A., Merkoci, A. (2017). Biosensors for plant pathogen detection. Biosens. Bioelectron., 93, 72‒86.
Google Scholar

Kim, J., Campbell, A. S., Esteban-Fernández de Ávila, B., Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389‒406
Google Scholar

Kłos – Witkowska, A. (2014). Ewolucja i rozwój biosensorów – problemy i perspektywy. PAK, 60, 1178‒1180.
Google Scholar

Kłos – Witkowska, A. (2015). Biosensory. PAK, 19, 37‒40.
Google Scholar

Kokkinos, C., Economou, A., Prodromidis, M. I. (2016). Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. Trends Anal. Chem. 79, 88‒105
Google Scholar

Kołwzan, B. (2009). Zastosowanie czujników biologicznych (biosensorów) do oceny jakości wody – Ochrona środowiska 4, 3‒14
Google Scholar

Lazcka, O., Del Campo, F. J., Munoz, F.X. (2007). Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron., 22, 1205‒1217
Google Scholar

Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., O’Kennedy, R. (2003). Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Tech., 32, 3‒13.
Google Scholar

Lichtfouse, E., Navarrete, M., Debaeke, P., Souchere, V., Alberola, C., Menassieu, J. (2009). Agronomy for sustainable agriculture. A review. Agron. Sustain. Dev., 29, 1‒6.
Google Scholar

Lin, H.Y., Huang, C.H., Lu, S.H., Kuo, I.T., Chau, L.K., (2014). Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens. Bioelectron. 51, 371–378.
Google Scholar

Luna-Moreno, D., Sanchez-Alvarez, A., Islas-Flores, I., Canto-Canche, B., Carrillo-Pech, M., Villarreal-Chiu, J.F., Rodríguez-Delgado, M. (2019). Early detection of the Fungal Banana Black Sigatoka Pathogen Pseudocercospora fijiensis by an SPR Immunosensor Method. Sensors 19, 465‒477.
Google Scholar

Magner, E. (2013). Biosensory elektrochemiczne – możliwości i ograniczenia komercjalizacji. Chemik. 67, 11‒13.
Google Scholar

Malecka, K., Michalczuk, L., Radecka, H., Radecki, J., (2014). Ion-channel genosensor for the detection of specific DNA sequences derived from Plum Pox Virus in plant extracts. Sensors, 14, 18611–18624.
Google Scholar

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R., Davis, C.E., Dandekar, A.M. (2015) Advanced methods of plant disease detection. A review. Agron. Sustain. Dev., 35, 1‒25.
Google Scholar

Mendes, R.K, Laschi, S, Stach-Machado, D.R., Kubota L.T., Marrazza G. (2012) A disposable voltammetric immunosensor based on magnetic beads for early diagnosis of soybean rust. Sens. Actuators B Chem 166–167, 135–140.
Google Scholar

Perumal, V., Hashim, U. (2014). Advances in biosensors: principle, architecture and applications, J. Appl. Bio-med. 12, 1‒15.
Google Scholar

Przewodowski, W., Barnyk, A. (2009). Szybki test do identyfikacji bakterii Clavibacter michi-ganensis ssp. sepedonicus. Post. Ochr. Rośl. 49, 696‒700.
Google Scholar

Pultar, J. (2009). Aptamer–antibody on-chip sandwich immunoassay for detection of CRP in spiked serum – Biosens. Bioelectron., 24, 1456–1461
Google Scholar

Pundira, C.S., Malik, A., Pretty, M. (2019) Bio-sensing of organophosphorus pesticides: A review Biosens. Bioelectron. 140, 11134
Google Scholar

Radecki, J., Radecka, H., Cieśla, J. (2006). Sensory i biosensory w kontroli żywności modyfikowanej genetycznie, Biotechnol. 3, 67‒78
Google Scholar

Salamońska, K., Stochła, W., Przewodowski, W. (2016). Nowoczesne metody diagnostyczne w identyfikacji molekularnej bakterii kwarantannowych ziemniaka. Ziemn. Pol., 4, 41‒45.
Google Scholar

Savary, S., Ficke, A., Aubertot, J-N., Hollier C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Sec., 4, 519‒537
Google Scholar

Sankiewicz, A., Puzan, B., Gorodkiewicz E. (2014). Bioczujniki SPRI – narzędzia diagnostyczne przyszłości. Chemik 68, 528‒535
Google Scholar

Schwenkbier, L., Pollok, S., König, S., Urban, M., Werres, S., Cialla-May, D., Weber, K., Popp, J., (2015). Towards on-site testing of Phytophthora species. Anal. Methods 7, 211–217
Google Scholar

Shi, J.Y., Guo, J.B., Bai, G.X., Chan, C.Y., Liu, X., Ye, W.W., Hao, J.H., Chen, S., Yang, M. A. (2015). Graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin a (BoNT/A) enzymatic activity. Biosens. Bioelectron. 65, 238–244
Google Scholar

Skottrup, P., Nicolaisen, M., Justesen, A.F., (2007). Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J. Microbiol. Methods 68, 507–515
Google Scholar

Stochła W., Przewodowski, W., Przewodowska, A., Salamońska, K. (2017). Immunodiagnostyczne metody wykrywania i identyfikacji bakteryjnych patogenów ziemniaka – Ziemn. Pol., 1, 14‒21.
Google Scholar

Thevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S. (2001). Electrochemical biosensors: recommended definitions and classification – Biosens. Bioelectron. 16, 121‒131
Google Scholar

Tilman, D., Balzer C., Hill, J., Befort, B.L. (2011). Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 108, 20260‒20264.
Google Scholar

Wang, J. (2008). Electrochemical glucose biosensors. Chem. Rev. 108, 814‒825
Google Scholar

Zezza, F., Pascale, M., Mulè, G., Visconti, A., (2006). Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. J. Microb. Methods 66 (3), 529–537
Google Scholar

Zhao, Y., Liu, L., Kong, D., Kuang, H., Wang, L., Xu, C. (2014). Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii ACS Appl. Mater. Interfaces, 6, 21178–21183.
Google Scholar

Zhao, W., Lu, J., Ma, W., Xu, C., Kuang, H., Zhu, S., (2011). Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosens. Bioelectron. 26, 4241–4244
Google Scholar

Zhou, J., Qi Q., Wang, C., Qian, Y., Liu, G., Wang, Y., Fu, L. (2019). Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices – Biosens. Bioelectron. 142, 111449
Google Scholar

Pobierz


Opublikowane
01/14/2021

Cited By / Share

Łabańska, M. . i Przewodowski , W. . (2021) „Biosensory – nowoczesne narzędzia analityczne do detekcji patogenów roślinnych”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (290), s. 33–42. doi: 10.37317/biul-2020-0009.

Autorzy

Małgorzata Łabańska 
m.labanska@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie Poland
http://orcid.org/0000-0002-1659-8129

Autorzy

Włodzimierz Przewodowski  

Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie Poland
http://orcid.org/0000-0002-4456-4727

Statystyki

Abstract views: 834
PDF downloads: 545


Licencja

Prawa autorskie (c) 2020 Małgorzata Łabańska, Włodzimierz Przewodowski

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.

Inne teksty tego samego autora