The impact of fusarium ear rot in Poland and methods to reduce losses caused by the disease

Seweryn Frasiński

s.frasinski@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Zakład Traw, Roślin Motylkowatych i Energetycznych Pracownia Traw Pastewnych i Roślin Motylkowatych (Poland)
https://orcid.org/0000-0003-3173-734X

Elżbieta Czembor


Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Zakład Traw, Roślin Motylkowatych i Energetycznych Pracownia Traw Pastewnych i Roślin Motylkowatych (Poland)
https://orcid.org/0000-0002-3021-3053

Justyna Lalak-Kańczugowska


Instytut Genetyki Roślin, Polska Akademia Nauk, Poznań Zakład Genetyki Patogenów i Odporności Roślin (Poland)
https://orcid.org/0000-0001-9005-6347

Abstract

Maize has a significant economic impact all over the world. Fungi in the genus Fusarium that cause fusarium ear rot of maize have significant effect on the yeld quality and quantity. The main threat is the contamination of grain with the mycotoxins they produce - as these are harmful to humans and animals. Such mycotoxins are a group of secondary metabolites of varied structure, which belong mainly to trichothecenes, fumonisins and zearalenones. As no efficient chemical control read and pink rot in the field is possible, prevention relies on cultural practices and use resistant hybrids. Insects play an important role in the infection, which is why it is recommended to control their prevalence during growing season.


Keywords:

Fusarium, fusarium ear rot, fodder maize, mycotoxins, deoxynivalenol, fumonisins, zearalenone

Arcella, D., Gergelova, P., Innocenti, M. L., Steinkellner, H. (2017). Human and animal dietary exposure to T‐2 and HT‐2 toxin. EFSA J. 15:. doi:10.2903/j.efsa.2017.4972.
Google Scholar

Berthiller, F., Dall’asta, C., Corradini, R., Marchelli, R., Sulyok, M., Krska, R., et al. (2009). Occurrence of deoxynivalenol and its 3- β -D-glucoside in wheat and maize. Food Addit. Contam. Part A 26: 507–511. doi:10.1080/02652030802555668.
Google Scholar

Berthiller F., Krska R., Domig K. J., Kneifel W., Juge N., Schuhmacher R., Adam G. (2011). Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol Lett. Oct 30;206(3):264-7. doi: 10.1016/j.toxlet.2011.08.006.
Google Scholar

Bocianowski, J., Szulc, P., Tratwal, A., Nowosad, K., Piesik, D. (2016). The influence of potassium to mineral fertilizers on the maize health. J. Integr. Agric. 15: 1286–1292. doi:10.1016/S2095-3119(15)61194-7.
Google Scholar

Bottalico, A. (1998). Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. Journal of Plant Pathology, 80(2), 85–103. https://doi.org/10.4454/jpp.v80i2.807
Google Scholar

Brandt, A. R. (2017). How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI). Biophys. Econ. Resour. Qual. 2: 2. doi:10.1007/s41247-017-0019-y.
Google Scholar

Brera, C., De Santis, B., Debegnach, F., Miraglia, M. (2008). “Mycotoxins,” in Food contaminants and residue analysis. Comprehensive analytical chemistry. volumne 51 Food Science Text Series., ed. Y. Piko (Oxford: Elsevier), 582.
Google Scholar

Chungu. C., Mather, D.E., Reid, L.M., Hamilton, R.I. (1996) Comparison of techniques for inoculating maize silk, kernel, and cob tissues with Fusarium graminearum. Plant Dis 80: 81-84
Google Scholar

Chulze, S. N. (2010). Strategies to reduce mycotoxin levels in maize during storage: a review. Food Addit. Contam. Part A 27: 651–657. doi:10.1080/19440040903573032.
Google Scholar

Commission Recommendation 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products: http://data.europa.eu/eli/reco/2013/165/oj [Accessed: 12.11.2020]
Google Scholar

Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs: http://data.europa.eu/eli/reg/2006/1881/oj [Accessed: 12.11.2020]
Google Scholar

Czembor, E., Frasiński, S., Elżbieta, C., Seweryn, F. (2018). Polskie elitarne linie wsobne kukurydzy źródłem odporności na fuzariozę kolb (Fusarium spp.) i głownię guzowatą (Ustilago maydis). Prog. Plant Prot. 58: 22–27. doi:10.14199/ppp-2018-002.
Google Scholar

Czembor, E., Ochodzki, P. (2009). Resistance of flint and dent maize forms for colonization by Fusarium spp. and mycotoxins contamination. Maydica 54: 263–267.
Google Scholar

Czembor, E., Stępień, Ł., Waśkiewicz, A. (2015). Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland. PLoS One 10: e0133644. doi:10.1371/journal.pone.0133644.
Google Scholar

De Curtis, F., De Cicco, V., Haidukowski, M., Pascale, M., Somma, S., Moretti, A. (2011). Effects of agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of maize in Southern Italy. F. Crop. Res. 123: 161–169. doi:10.1016/j.fcr.2011.05.012.
Google Scholar

FAOSTAT (2020). Statistical Division of the UN Food and Agriculture Organization. http://www.fao.org/faostat [Accesed: 12.11.2020]
Google Scholar

Genebank NIH genetic sequence database. https://www.ncbi.nlm.nih.gov/genbank [Accesed: 12.11.2020]
Google Scholar

Ferrigo, D., Raiola, A., Causin, R. (2016). Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules 21: 627. doi:10.3390/molecules21050627.
Google Scholar

Folcher, L., Jarry, M., Weissenberger, A., Gérault, F., Eychenne, N., Delos, M., et al. (2009). Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Prot. 28: 302–308. doi:10.1016/j.cropro.2008.11.007.
Google Scholar

Frasiński, S., Czembor E., Lalak-Kańczugowska, J. (2019) Czynniki środowiskowe modyfikujące porażenie odmian kukurydzy pastewnej grzybami z rodzaju Fusarium spp. Dni Młodego Naukowca 2019, Radzików IHAR, 7-8.11.2019
Google Scholar

Galaverna G., DallAsta C., Mangia M., Dossena A., Marchelli R. (2009): Masked Mycotoxins: an Emerging Issue for Food Safety. Czech J. Food Sci., 27: S89-S92.
Google Scholar

Gromadzka, K., Błaszczyk, L., Chełkowski, J., Waśkiewicz, A. (2019). Occurrence of mycotoxigenic fusarium species and competitive fungi on preharvest maize ear rot in Poland. Toxins (Basel). 11:. doi:10.3390/toxins11040224.
Google Scholar

GUS (2020) Rocznik Statystyczny Rolnictwa 2019, Warszawa: 140, 141, 149.
Google Scholar

Herrera, M., Conchello, P., Juan, T., Estopañan, G., Herrera, A., Ariño, A. (2010). Fumonisins concentrations in maize as affected by physico-chemical, environmental and agronomical conditions. Maydica 55: 121–126.
Google Scholar

Intergovernmental Panel on Climate Change (IPCC) (2017) IPCC Fifth Assessment Report (AR5) Observed Climate Change Impacts Database, Version 2.01. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4FT8J0X [Accessed: 12.11.2020]
Google Scholar

Keller, M. D., Bergstrom, G. C., Shields, E. J. (2014). The aerobiology of Fusarium graminearum. Aerobiologia (Bologna). 30: 123–136. doi:10.1007/s10453-013-9321-3.
Google Scholar

Kowalska K., Habrowska-Górczyńska D. E., Piastowska-Ciesielska A. W. (2016) Zearalenone as an endocrine disruptor in humans. Environ Toxicol Pharmacol. Dec;48:141-149. doi: 10.1016/j.etap.2016.10.015. Epub 2016 Oct 18. PMID: 27771507.
Google Scholar

Król, A., Żyłowski, T., Kozyra, J., Księżak, J. (2018). Soil moisture under no-tillage and tillage systems in maize long-term experiment. Polish J. Soil Sci. 51: 103–117. doi:10.17951/pjss/2018.51.1.103.
Google Scholar

Kundzewicz, Z. W., Hov, Ø., Okruszko, T. (2017). Zmiany klimatu i ich wpływ na wybrane sektory w Polsce. ISRL PAN Poznań: CHASE-PL.
Google Scholar

Leslie, J. F., Summerell, B. A. (2006). The Fusarium Laboratory Manual. , eds. J. F. Leslie and B. A. Summerell Ames, Iowa, USA: Blackwell Publishing doi:10.1002/9780470278376.
Google Scholar

Lew, H., Adler, A., Edinger, W. (1991). Moniliformin and the European Corn Borer (Ostrinia nubilalis). Mycotoxin Res. 7: 71–76. doi:10.1007/BF03192189.
Google Scholar

Lew, H., Chelkowski, J., Pronczuk, P., Edinger, W. (1996). Occurrence of the mycotoxin moniliformin in maize (Zea mays L.) ears infected by Fusarium subglutinans (Wollenw. & Reinking) Nelson et al. Food Addit. Contam. 13: 321–324. doi:10.1080/02652039609374414.
Google Scholar

Logrieco, A., Mulè, G., Moretti, A., Bottalico, A. (2002). Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 108: 597–609. doi:10.1023/A:1020679029993.
Google Scholar

Magan, N., Aldred, D. (2007). Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 119: 131–139. doi:10.1016/j.ijfoodmicro.2007.07.034.
Google Scholar

Mabuza, L.M., Janse van Rensburg, B., Flett, B.C. et al. (2018) Accumulation of toxigenic Fusarium species and Stenocarpella maydis in maize grain grown under different cropping systems. Eur J Plant Pathol 152, 297–308. https://doi.org/10.1007/s10658-018-1475-y
Google Scholar

Marasas, W. F. (2001). Discovery and occurrence of the fumonisins: a historical perspective. Environ. Health Perspect. 109 Suppl: 239–43. doi:Doi 10.2307/3435014.
Google Scholar

Marín, S., Magan, N., Ramos, A. J., Sanchis, V. (2004). Fumonisin-producing strains of Fusarium: a review of their ecophysiology. J. Food Prot. 67: 1792–805. doi:10.4315/0362-028X-67.8.1792.
Google Scholar

Mesterházy, A. K., Lemmens, M., Reid, L. (2012). Breeding for resistance to ear rots caused by Fusarium spp. in maize – a review. Plant Breeding. 131. 1-19.
Google Scholar

Miedaner, T., Gwiazdowska, D., Waśkiewicz, A. (2017). Editorial: Management of Fusarium Species and their Mycotoxins in Cereal Food and Feed. Front. Microbiol. 8: 1–3. doi:10.3389/fmicb.2017.01543.
Google Scholar

Missmer, S. A., Suarez, L., Felkner, M., Wang, E., Merrill, A. H., Rothman, K. J., et al. (2006). Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas–Mexico Border. Environ. Health Perspect. 114: 237–241. doi:10.1289/ehp.8221.
Google Scholar

Moretti, A., Pascale, M., Logrieco, A. F. (2019). Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 84: 38–40. doi:10.1016/j.tifs.2018.03.008.
Google Scholar

Munkvold, G. P. (2003)a. Cultural and genetic approaches to managing mycotoxins in maize. Annu. Rev. Phytopathol. 41: 99–116. doi:10.1146/annurev.phyto.41.052002.095510.
Google Scholar

Munkvold, G. P. (2003)b. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109: 705–713. doi:10.1023/A:1026078324268.
Google Scholar

Munkvold, G. P., Arias, S., Taschl, I., and Gruber-Dorninger, C. (2019). “Mycotoxins in corn: occurrence, impacts, and management,” in Corn Chemistry and Technology, ed. S. O. Serna-Saldivar (Cambridge: Woodhead Publishing), 235–287.
Google Scholar

Munkvold, G. P., Carlton, W. M. (1997). Influence of Inoculation Method on Systemic Fusarium moniliforme Infection of Maize Plants Grown from Infected Seeds. Plant Dis. 81: 211–216. doi:10.1094/PDIS.1997.81.2.211.
Google Scholar

Munkvold, G. P., McGee, D. C., Carlton, W. M. (1997). Importance of Different Pathways for Maize Kernel Infection by Fusarium moniliforme. Phytopathology 87: 209–217. doi:10.1094/PHYTO.1997.87.2.209.
Google Scholar

Murillo-Williams, A., Munkvold, G. P. (2008). Systemic Infection by Fusarium verticillioides in Maize Plants Grown Under Three Temperature Regimes. Plant Dis. 92: 1695–1700. doi:10.1094/PDIS-92-12-1695.
Google Scholar

Murphy, D. J., Hall, C. A. S., Powers, B. (2011). New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environ. Dev. Sustain. 13: 179–202. doi:10.1007/s10668-010-9255-7.
Google Scholar

Mulѐ, G., Susca, A., Stea, G., Moretti, A. (2004) A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur J Plant Pathol: 110: 495–502.
Google Scholar

Ostry, V., Malir, F., Toman, J., Grosse, Y. (2017). Mycotoxins as human carcinogens—the IARC Monographs classification. Mycotoxin Res. 33: 65–73. doi:10.1007/s12550-016-0265-7.
Google Scholar

Ostry, V., Ovesna, J., Skarkova, J., Pouchova, V., Ruprich, J. (2010). A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. Mycotoxin Res. 26: 141–145. doi:10.1007/s12550-010-0056-5.
Google Scholar

Palmero, D., Rodríguez, J. M., De Cara, M., Camacho, F., Iglesias, C., Tello, J. C. (2011). Fungal microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric dust and rainfall dust. J. Ind. Microbiol. Biotechnol. 38: 13–20. doi:10.1007/s10295-010-0831-5.
Google Scholar

Panasiuk, L., Jedziniak, P., Pietruszka, K., Piatkowska, M., Bocian, L. (2019). Frequency and levels of regulated and emerging mycotoxins in silage in Poland. Mycotoxin Res. 35: 17–25. doi:10.1007/s12550-018-0327-0.
Google Scholar

Parsons, M. W., Munkvold, G. P. (2010). Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 27: 591–607. doi:10.1080/19440040903456337.
Google Scholar

Pasquali, M., Beyer, M., Logrieco, A., Audenaert, K., Balmas, V., Basler, R., et al. (2016). A European database of Fusarium graminearum and F. culmorum trichothecene genotypes. Front. Microbiol. 7:. doi:10.3389/fmicb.2016.00406.
Google Scholar

Piniewski, M., Szczęśniak, M., Marcinkowski, P., O’Keeffe, J., Okruszko, T., Nieróbca, A., et al. (2017). “Projekcje wpływu zmian klimatu na rośliny jare do roku 2050 w oparciu o symulacje modelu,” in Zmiany klimatu i ich wpływ na wybrane sektory w Polsce, eds. Z. Kundzewicz, Ø. Hov, and T. Okruszko (Poznań: ISRL PAN Poznań), 182–198.
Google Scholar

Popkiewicz, M., Sierpińska, A. (2019). Konsekwencje zmiany klimatu dla Polski wg Ministerstwa Środowiska. Available at: https://naukaoklimacie.pl/aktualnosci/konsekwencje-zmiany-klimatu-dla-polski-wg-ministerstwa-srodowiska-311 [Accessed: 15.01.2020].
Google Scholar

Ranum, P., Peña-Rosas, J. P., Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 1312: 105–112. doi:10.1111/nyas.12396.
Google Scholar

Reid, L., Nicol, R., Ouellet, T., Savard, M., Miller, J., Young, J., Stewart, D., Schaafsma, A. (1999) Interaction of Fusarium graminearum and F. mon- iliforme in maize ears: disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology 89 (11), 1028–1037.
Google Scholar

Reid, L. M., Zhu, X., Ma, B. L. (2001). Crop rotation and nitrogen effects on maize susceptibility to gibberella (Fusarium graminearum) ear rot. Plant Soil 237: 1–14. doi:10.1023/A:1013311703454.
Google Scholar

Scauflaire, J., Gourgue, M., Munaut, F. (2011) Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 103: 586–597. pmid:21186324
Google Scholar

Shier W.T., Shier A.C., Xie W., Mirocha C.J. (2001) Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon. Sep;39(9): 1435-8. doi: 10.1016/s0041-0101(00)00259-2.
Google Scholar

Sobek, E. A., Munkvold, G. P. (1999). European Corn Borer (Lepidoptera: Pyralidae) Larvae as Vectors of Fusarium moniliforme, Causing Kernel Rot and Symptomless Infection of Maize Kernels. J. Econ. Entomol. 92: 503–509. doi:10.1093/jee/92.3.503.
Google Scholar

Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., Kizek, R. (2010). Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 3: 94–99. doi:10.2478/v10102-010-0019-x.
Google Scholar

Stępień, Ł., Gromadzka, K., Chełkowski, J. (2012) Polymorphism of mycotoxin biosynthetic genes among Fusarium equiseti isolates from Italy and Poland. J Appl Genet; 53: 227–236. pmid:22354659
Google Scholar

Stępień, Ł., Gromadzka, K., Chełkowski, J., Basińska-Barczak, A., Lalak-Kańczugowska, J. (2019). Diversity and mycotoxin production by Fusarium temperatum and Fusarium subglutinans as causal agents of pre-harvest Fusarium maize ear rot in Poland. J. Appl. Genet. 60: 113–121. doi:10.1007/s13353-018-0478-x.
Google Scholar

Szulc, P., Rybus-Zajac, M., Jagla, M. (2014). Influence of nitrogen dose, type of nitrogen fertilizer and method of its application on plant health of maize hybrids (Zea mays L.). Electron. J. Polish Agric. Univ. Ser. Agron. 17
Google Scholar

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011) MEGA5: Molecular evolutionarygenetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Mol. Biol. Evol. 28: 2731–2739
Google Scholar

Thompson, J.D.; Gibson, T.J.; Higgins, D.G. (2002) Multiple Sequence Alignment Using ClustalW and ClustalX.Curr. Protoc. Bioinform. 00: 2.3.1–2.3.2
Google Scholar

Thompson, M., Raizada, M. (2018). Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road. Pathogens 7: 81. doi:10.3390/pathogens7040081.
Google Scholar

Uchwała nr 67 Rady Ministrów z dnia 16 lipca 2019 r. w sprawie przyjęcia „Polityki ekologicznej państwa 2030 – strategii rozwoju w obszarze środowiska i gospodarki wodnej”. (2019) Monitor Polski 2019: poz 794. http://www.monitorpolski.gov.pl/mp/2019/794/1 [Accessed: 16.01.2020].
Google Scholar

Wit, M., Warzecha, R., Mirzwa-Mróz, E., Jabońska, E., Ochodzki, P., Waśkiewicz, A., et al. (2011). Susceptibility of flint and dent maize ears to Fusarium species. Phytopathologia:, 35–45.
Google Scholar

Zijlstra, C., Lund, I., Justesen, A. F., Nicolaisen, M., Jensen, P. K., Bianciotto, V., et al. (2011). Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document). Pest Manag. Sci. 67: 616–625. doi:10.1002/ps.2134.
Google Scholar

Download


Published
2020-12-31

Cited by

Frasiński, S. ., Czembor, E. . and Lalak-Kańczugowska, J. . (2020) “The impact of fusarium ear rot in Poland and methods to reduce losses caused by the disease ”, Bulletin of Plant Breeding and Acclimatization Institute, (290), pp. 43–50. doi: 10.37317/biul-2020-0025.

Authors

Seweryn Frasiński 
s.frasinski@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Zakład Traw, Roślin Motylkowatych i Energetycznych Pracownia Traw Pastewnych i Roślin Motylkowatych Poland
https://orcid.org/0000-0003-3173-734X

Authors

Elżbieta Czembor 

Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Zakład Traw, Roślin Motylkowatych i Energetycznych Pracownia Traw Pastewnych i Roślin Motylkowatych Poland
https://orcid.org/0000-0002-3021-3053

Authors

Justyna Lalak-Kańczugowska 

Instytut Genetyki Roślin, Polska Akademia Nauk, Poznań Zakład Genetyki Patogenów i Odporności Roślin Poland
https://orcid.org/0000-0001-9005-6347

Statistics

Abstract views: 403
PDF downloads: 204


License

Copyright (c) 2020 Seweryn Frasiński

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 > >>