Potato juice encapsulation into liposomes

Anna Bryła

kbimz@up.poznan.pl
Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu (Poland)

Wojciech Juzwa


Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu (Poland)

Grażyna Lewandowicz


Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu (Poland)

Abstract

The potato juice is a material of various biological activities. It reveals anti-inflammatory effect within gastrointestinal tract, as well as antiproliferative activity against stomach and intestine cancer cells. Moreover, it stimulates the growth of probiotic Lactobacillus and Bifidobacterium, inhibiting the development of pathogens — Clostridium perfringens and E. coli at the same time. However, due to the high susceptibility of potato juice bioactive substances to degradation by light, oxygen and possible interaction in the food product, the use of potato juice for food products fortification may be limited. Encapsulation into liposomes may be the solution. The aim of this study was to evaluate the usefulness of lecithin of different biological origins for the encapsulation of potato juice into liposomes by a thin film hydration method. Prior to encapsulation process, potato juice was subjected to cryoconcentration and then to a proteolysis performed in a membrane reactor equipped with an ultrafiltration separation unit. The hydrolysate was diluted in phosphate buffered saline and encapsulated into liposomes. Liposomes were prepared by thin lipid film hydration technique. Size distribution of the obtained particles was determined by dynamic light scattering method as well as was their stability by the ζ potential measurement. At the same time, the nanocapsules morphology was studied by flow cytometry. Additionally, the encapsulation process efficiency was evaluated. It was found that, both sunflower and soya lecithin may be used for potato juice hydrolysate encapsulation into liposomes. Egg yolk lecithin, due to the unsatisfactory encapsulation efficiency cannot be recommended for this purpose. The highest encapsulation yield was observed for sunflower lecithin, but the obtained liposomes were characterized by relatively low stability. Soy lecithin however, provided stable liposomes with a satisfactory efficiency, and without a necessity of a strong dilution of the hydrolysate in a phosphate buffer saline. It was shown that the obtained population of liposomes was homogeneous both in terms of size and structure of the nanocapsules.

Supporting Agencies

The work was carried out under the project no. POIG 01.01.02-00-061/09 entitled

Keywords:

hydrolysate, liposome, nanocapsule, potato juce

Atkins W. A. Chemia fizyczna. Wydawnictwo Naukowe PWN, Warszawa 2007.
Google Scholar

Bangham A. D., Standish M. M., Watkins J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 13 (1): 238 — 252.
Google Scholar

Charcosset C., El-Harati A., Fessi H. 2005. Preparation of solid lipid nanoparticles using a membrane contactor, J of Controlled Release, 108: 112 — 120.
Google Scholar

Chen Y., Lu Y., Chen J., Lai J., Sun J., Hu F., Wu W. 2009. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt, Int. J. Pharm. 376: 153 — 160.
Google Scholar

Delgado A.V., González-Caballero F., Hunter R.J., Koopal L.K., Lyklema J. 2005. Measurement and interpretation of electrokinetic phenomena (IUPAC Technical Report). Pure & Applied Chemistry 77 (10): 1753 — 1805.
Google Scholar

Hope M. J., Bally M. B., Webb G., Cullis P. R. 1985. Production of large unilamellar vesicles by a rapid extrusion procedure. characterization of size, distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812: 55 — 65.
Google Scholar

Jaafar-Maalej C., Charcosset C., Fessi H. 2011. A new method for liposome preparation using a membrane
Google Scholar

Contactor. J. Liposome Res. 21 (3): 213 — 220.
Google Scholar

Keller B.C. 2001. Liposomes in nutrition. Trends Food Sci. Tech. 12: 25 — 31.
Google Scholar

Khosrevi-Darani K., Pardekhty A., Homerpishek H., Rao M., Mozafari M. R. 2007. The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nannotherapy. Micron. 38: 804 — 818.
Google Scholar

Kowalczewski P., Celka K., Białas W., Lewandowicz G. 2012a. Antioxidant activity of potato juice. Acta Sci. Pol. Technol. Aliment. 11 (2): 175 — 181.
Google Scholar

Kowalczewski P., Lewandowicz G., Makowska A., Olejnik A., Obuchowski W. 2012b. Charakterystyka ekstrudowanych przekąsek zbożowych zawierających sok z ziemniaka. Biul. IHAR 266: 319 — 329.
Google Scholar

Kozubek A. 2004. Wstęp do technologii liposomowej. Wrocław. Dostępne na: http://www.ibmb.uni. wroc.pl/studia/liposomes.pdf.
Google Scholar

Lee, H. S. 2005. Clinical effects of intake of Juice valley and Gogu valley towards fecal microflora of healthy human volunteers. Food Sci. Biotechnol. 14: 540 — 542.
Google Scholar

Lewandowicz G., Leja K., Lubiewski Z., Białas W. Dembczyński R. 2010. Wpływ obróbki wstępnej soku ziemniaczanego na przebieg hydrolizy enzymatycznej frakcji białkowej w reaktorze membranowym. W: Membrany i Procesy Membranowe w Ochronie Środowiska. Monografie Komitetu Inżynierii Środowiska vol. 65: 363 — 371.
Google Scholar

Lewandowicz G., Kowalczewski P., Białas W., Olejnik A., Rychlik J. 2012. Rozdział frakcji soku ziemniaczanego różniących się masą cząsteczkową i charakterystyka ich aktywności biologicznej. Biul. IHAR 266: 331 — 344.
Google Scholar

Lewandowicz G., Kowalczewski P., Olejnik A., Jodynis-Liebert J., Kujawska M., Lesiecki M. 2014. Sposób otrzymywania preparatu z soku ziemniaka oraz jego zastosowanie. Zgłoszenie Patentowe PL nr P.406918 z dnia 24.01.2014.
Google Scholar

Lubiewski Z., Śmigielska H., Lewandowicz G., Balcerek W. 2006. Charakterystyka odcieku po koagulacji białka pozyskiwanego w toku kampanii krochmalniczej. Zesz. Probl. Post. Nauk Rol. z. 511: 617 — 626.
Google Scholar

Meure L. A., Foster N. R., Dehghani F. 2008. Conventional and dense gas techniques for the production of liposomes: a review. AAPS Pharm Sci. Tech. 9 (3): 789 — 809.
Google Scholar

Mozafari M. R., Khosravi-Darani K., Borazan G. G., Cui J., Pardakhty A., Yurdugul S. 2008. Encapsulation of food ingredients using nanoliposome technology. International Journal of Food Properties, 11: 833 — 844.
Google Scholar

Olejnik A., Białas W., Tomczyk J., Lewandowicz G. 2011. Cytotoksyczność i genotoksyczność soku z ziemniaka. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Poznaniu 205: 118 — 125.
Google Scholar

Papahadjopoulos D., Miller N. 1967. Structural characteristics of hydrates liquid crystals. BBA. 75067: 624 — 638.
Google Scholar

Pouvreau L., Gruppen H., Piersma S.R., van den Broek A. M., van Koningsveld G. A., Voragen A. G. J. 2001. Relative abundance and inhibitory distribution of protease inhibitors in potato juice from cv. Elkana. J. Agr. Food Chem. 49: 2864 — 2874.
Google Scholar

Ruseler-van Embden J. G. H., van Lieshout L. M. C., Laman J.D. 2004. Methods and means for preventing or treating inflammation or puritis, Patent USA 6:723,354.
Google Scholar

Ruysschaert T., Marque A., Duteyrat J. L., Lesieur S., Winterhalter M., Fournier D. 2005. Liposomes retention in size exclusion chromatography. BMC Biotechnology 5 (11).
Google Scholar

Sato K., Obinata T., Sugawara., Urabe I., Yomo T. 2006. Quantification of structural properties of cel-sized individual liposomes by flow cytometry. J Biosci Bioeng, 102 ( 3): 171 — 178.
Google Scholar

Shew. R. L., Deamer D. W. 1985. A novel method for encapsulation of macromolecules in liposomes. Biochem. Biophis. Acta 816: 1 — 8.
Google Scholar

Wagner A, Vorauer-Uhl K., Katinger H. 2002. Liposomes produced in a pilot scale: production, purification and efficiency aspects, Eur. J. Pharm. Biopharm. 54: 213 — 219.
Google Scholar

Wagner A., Platzgummer M., Kreismayr G., Quendler H., Stiegler G., Ferko B., Vecera G., Vorauer-Uhl K., Katinger H. 2006. GMP Production of liposomes-a new industrial approach. J Liposome Res. 16: 311 — 319.
Google Scholar

Vorauer-Uhl K., Wagner A., Katinger H. 2002. Long term stability of rh-Cu/Zn-superoxide dismutase (SOD)-liposomes prepared by the cross-flow injection technique following International Conference on Harmonisation (ICH)-guidelines. Eur. J. Pharm. Biopharm. 54: 83 — 87.
Google Scholar


Published
2014-06-30

Cited by

Bryła, A., Juzwa, W. and Lewandowicz, G. (2014) “Potato juice encapsulation into liposomes”, Bulletin of Plant Breeding and Acclimatization Institute, (272), pp. 49–62. doi: 10.37317/biul-2014-0030.

Authors

Anna Bryła 
kbimz@up.poznan.pl
Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu Poland

Authors

Wojciech Juzwa 

Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu Poland

Authors

Grażyna Lewandowicz 

Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu Poland

Statistics

Abstract views: 200
PDF downloads: 86


License

Copyright (c) 2014 Anna Bryła, Wojciech Juzwa, Grażyna Lewandowicz

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.