Looking for sources of resistance to ear rot and stalk rot on the basis of the pedigree selection

Elżbieta Czembor

e.czembor@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — PIB, Radzików (Poland)

Magdalena Matusiak


Instytut Hodowli i Aklimatyzacji Roślin — PIB, Radzików (Poland)

Roman Warzecha


Instytut Hodowli i Aklimatyzacji Roślin — PIB, Radzików (Poland)

Abstract

Ear rots caused by Fusarium graminearum and F. verticillioides are some of the most economically significant diseases of maize occurring widely throughout maize growing regions of the world. Another very destructive disease in Central Europe is the stalk rot caused by F. graminearum. The major objective of this study was to determine effectiveness of the pedigree selection to develop improved maize flint and dent genotypes with increased resistance to the ear and stalk rots caused by F. graminearum. Sixty three maize populations were evaluated under field conditions. In each population group at least 170 the earliest flowering So plants were self-pollinated and inoculated with F. gramninearum into the developing kernels. Ear rot resistance was scored using 1–7 scale. Stalk rot resistance was evaluated under natural infection, where F. graminearum prevails, using 1–9 scale. All genotypes rated lower than 3 for ear rot and lower than 5 for stalk rot were selected to continue the selfing procedure. Phenotypic variation for ear rot, stalk rot resistance and flowering time were significant. Genetic gain obtained for ear rot and stalk rot was higher in the flint group than in the dent forms. For flint forms it was determined that frequency of genotypes belong to the S3 generation and scored as a moderate resistant was about 30% higher than within S1 generation. In the group of dent forms frequency of genotypes belong to the S3 generation and scored as a moderate resistant was 15 - 20% higher than within S1 generation. Materials of the S3 generations were on average more than 10 days earlier than the So. Positive correlation between ear rot resistance and flowering time was observed.

Supporting Agencies

Research results obtained as part of a project funded by the Ministry of Agriculture and Rural Development in the field of basic research for biological progress in plant production (PBwPR)

Keywords:

ear rot, maize, source of resistance, stalk rot

Adamczyk J. 1991. Breeding value of collected maize open pollinated varieties and synthetics. Plant Genetic Res. Conservation, Reports 1986–1990, Radzików: 57 — 58.
Google Scholar

Adamczyk J. 1998. Przegląd metod hodowli kukurydzy i ich skuteczność w praktyce. Biul. IHAR 208: 123 — 130.
Google Scholar

Adamczyk J. 1999. Oszacowanie wartości hodowlanej odmian populacyjnych i syntetycznych kukurydzy (Zea mays L.). Biul. IHAR 209: 223 — 245.
Google Scholar

Adamczyk J., Królikowski Z. 1997. U progu 45- lecia polskiej hodowli mieszańców kukurydzy — dorobek i perspektywy. W: Hodowla Roślin — materiały z I Krajowej Konferencji. Poznań, 19–20 XI 1997: 61 — 64.
Google Scholar

Adamczyk J., Cygert H., Czajczyński J. 2003. 50 lat hodowli kukurydzy mieszańcowej w Polsce — dorobek i perspektywy. Biul. IHAR 230: 423 — 431.
Google Scholar

Adamczyk J., Rogacki J., Cygert H. 2010. Postęp w hodowli kukurydzy w Polsce. Artykuł przeglądowy. Acta Sci. Pol., Agricultura 9 (4): 85 — 91.
Google Scholar

Ali M. L., Taylor J. H., Jie L., Sun G., William M., Kasha K. J., Reid L. M., Pauls K. P. 2005. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48: 521 — 533.
Google Scholar

Bartok T., Szecsi A ., Szekeres A., Mesterhazy A., Bartok M. 2006. Detection of new fumonisin mycotoxins and fumonisin - like compounds by reversed phase - high - performance liquid chromatography/electrospray ionization - ion - trap mass spectrometry. Rapid Commun. Mass Spectrom. 20: 1 — 17.
Google Scholar

Bartok T., Tolgyesi L., Szekeres A., Varga M., Bartha R., Szecsi A., Bartok M., Mesterhazy A. 2010. Detection and characterization of twenty - eight isomers of fumonisin B1 (FB1) mycotoxin in a solid rice culture infected with Fusarium verticillioides by reserved phase high performance liquid chromatography/electro spray ionization time of flight and ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 24: 35 — 42.
Google Scholar

Czembor E., Ochodzki P. 2009. Resistance of flint and dent maize forms for colonization by Fusarium spp. and mycotoxin contamination. Maydica 54: 263 — 267.
Google Scholar

Czembor E., Warzecha R., Adamczyk J. 2005. Wytwarzanie materiałów wyjściowych o podwyższonej odporności na fuzariozę kolb i zgorzel podstawy łodygi. Biul. IHAR 236: 203 — 214.
Google Scholar

Czembor E., Presello D., Adamczyk J., Wójcik K. 2011. Enhancing disease resistance to Fusarium by using exotic genotypic variability”. Book of abstracts ISM conference “Strategies to reduce the impact of mycotoxins in a global context”, 18–18. 11: 116.
Google Scholar

Czembor E., Waśkiewicz A., Stępień Ł. 2013. Genetic variation for ear rot resistance and mycotoxin content of Polish maize elite inbreed lines after inoculation with Fusarium graminearum and F. verticillioides. Book of abstract. European Fusarium Seminar, Bordoux, Francja, 2013.
Google Scholar

Dolstra O., Marton C., Menzi M., Mohr I., Plienegger D. I., Prończuk M. 1993. Evaluation of recurrent selection for stalk rot resistance in a synthetic maize population. Proc. of Maize and Sorgum. Eucarpia XVIth Conference, June 6–9 1993, Bergamo, Italy: 1 — 7.
Google Scholar

Eller M. S., Robertson- Hoyt L. A., Payne G. A., Holland J. B. 2008 b. Grain yield and Fusarium ear rot of maize hybrids developed from lines with varying levels of resistance. Maydica 53: 231 — 237.
Google Scholar

Garcia D., Ramos A. J., Sanchis V., Marı´n S. 2009. Predicting mycotoxins in foods: a review. Food Microbiol. 26: 757 — 769.
Google Scholar

Logrieco A., Mule G., Moretti A., Bottalico A. 2002. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 108: 597 — 609.
Google Scholar

Meissler M., Mouron P., Musa T., Bigler F., Pons X., Vasileiadis V.P., Otto S., Antichi D., Kiss J., Pálink ás, Z., Dorner Z., van der Weide R., Groten J., Czembor E., Adamczyk J., Thibord J-B., Melander B., Cordsen Nielsen G., Poulsen R. T., Zimmermann O., Verschwele A., Oldenburg E. 2010. Pests, pesticide use and alternative options in European maize production: current status and future prospects, Journal of Applied Entomology, 34 (5): 357 — 375.
Google Scholar

Mesterhazy A., Lemmens M., Reid. L. M. 2012. Breeding for resistance to ear rot caused by Fusarium spp. in maize – a review. Plant Breesing 131: 1 — 19.
Google Scholar

Munkvold G. P. 2003 a. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109: 705 — 713.
Google Scholar

Munkvold G. P. 2003 b. Cultural and genetic approaches to managing mycotoxins in maize. Annu. Rev. Phytopathol. 41: 99—116.
Google Scholar

Pestka J. J., Bondy G. S. 1994. Immunotoxic effects of mycotoxins. In: Miller J. D., Trenholm H. L. (eds), Mycotoxins in grain: Compounds other than Aflatoxin. The American Phytopathological Society, St. Paul, MN.: 339 — 358.
Google Scholar

Papst C., Utz H. F., Melchinger A. E., Eder J., Magg T., Klein D., Bohn M. 2005 Mycotoxins produced by Fusarium spp. in isogenic Bt vs. non — Bt maize hybrids under European corn borer pressure. Agron. J. 97: 219 — 224.
Google Scholar

Presello D. A., Reid L. M., Butler G., Mather D. E. 2005. Pedigree selection for Gibberella ear rot resistance in maize populations. Euphytica 143: 1 — 8.
Google Scholar

Presello D. A., Pereyra A. O., Iglesias J., Fauguel C. M., Sampietro D. A., Eyherabide G. H. 2011 a. Responses to selection of S5 inbreds for broad — based resistance to ear rots and grain mycotoxin contamination caused by Fusarium spp. in maize. Euphytica 178: 23 — 29.
Google Scholar

Presello D. A., Fauguel C. M., Rodríguez Giomi, S. D. A., Iglesias J., Fernández. 2011 b. Traits associated to ear rot and mycotoxin contamination caused by Fusarium spp. Book of abstracts ISM Conference “Strategies to reduce the impact of mycotoxins in a global context”.
Google Scholar

Prończuk M., Bojanowski J., Warzecha R., Laudański Z. 2007. Badania nad odpornością kukurydzy na zgorzel podstawy łodyg. Część I. Ocena podatności odmian mieszańcowych w warunkach infekcji naturalnej. Biul. IHAR 245: 155 — 169.
Google Scholar

Reid L. M., Hamilton R. I. 1996 a. Effects of inoculation position, timing, macroconidial concentration, and irrigation on resistance of maize to Fusarium graminearum infection through kernels. Can. J. Plant Pathol. 18: 279 — 285.
Google Scholar

Reid L. M., Hamilton R. I., Mather D. E. 1996 b. Screening Maize for Resistance to Gibberella Ear Rot. Agriculture and Agri - Food Canada Technical Bulletin., Publication: 196 — 205.
Google Scholar

Reid L. M., McDiarmid G., Parker A. J. Woldemariam T. 2003. CO441 corn inbred line. Can. J. Plant Sci. 83: 79 — 80.
Google Scholar

Reid L. M., McDiarmid G., Parker A. J., Woldemariam T., Hamilton R. I. 2001 a. CO388 and CO389 corn inbred lines. Can. J. Plant Sci. 81: 457 — 459.
Google Scholar

Reid L. M., McDiarmid G., Parker A. J., Woldemariam T., Hamilton R. I. 2001 b. CO430, CO431 and CO432 corn inbred lines. Can. J. Plant Sci. 81: 283 — 284.
Google Scholar

Robertson-Hoyt L. A., Jines M. P., Balint-Kurti P. J., Kleinschmidt C. E., White D. G., Payne G. A., Maragos C. M., Molnar T. L., Holland J. B. 2006 c. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci. 46: 1734 — 1743.
Google Scholar

Vasileiadis V. P., Otto S., Sattin M., Palinkás Z., Veres A., Bán R. Kiss J., Pons X., Kudsk P., Weide R., Czembor E., Moonen C., Kiss J. 2011. Crop protection in European maize — based cropping systems: Current practices and recommendations for innovative Integrated Pest Management. Agricultural Systems 104: 533 — 540.
Google Scholar

Zijlstra, C., Lund, I., Justesen A., Nicolaisen M., Bianciotto V., Posta K., Balestrini R., Przetakiewicz A., Czembor E., van de Zande J. 2011. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document). Pest Manag. Sci. 67: 616 — 625.
Google Scholar

Zhi-Min, Jun-Qiang, Rui-Xia Wang, Jia-Fa, Xiao-Dong, Wei Chen, Wei-Bing, Hua-Fang, Xiao-Dongi, Zong-Liang, Jian-Yu. 2011. A new QTL for resistance to Fusarium ear rot in maize. J. Appl. Genetics 52: 403 — 406.
Google Scholar


Published
2013-09-30

Cited by

Czembor, E., Matusiak, M. and Warzecha, R. (2013) “Looking for sources of resistance to ear rot and stalk rot on the basis of the pedigree selection”, Bulletin of Plant Breeding and Acclimatization Institute, (269), pp. 123–139. doi: 10.37317/biul-2013-0023.

Authors

Elżbieta Czembor 
e.czembor@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — PIB, Radzików Poland

Authors

Magdalena Matusiak 

Instytut Hodowli i Aklimatyzacji Roślin — PIB, Radzików Poland

Authors

Roman Warzecha 

Instytut Hodowli i Aklimatyzacji Roślin — PIB, Radzików Poland

Statistics

Abstract views: 214
PDF downloads: 37


License

Copyright (c) 2013 Elżbieta Czembor, Magdalena Matusiak, Roman Warzecha

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 > >>