Efektywność introgresji genów Glu-1 wysokocząsteczkowych glutenin w zwiększaniu wartości wypiekowej ziarna zbóż — przegląd literatury

Józef Pilch

j.pilch@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin, Zakład Oceny Jakości i Metod Hodowli Zbóż, Kraków (Poland)

Abstrakt

Wysokocząsteczkowe gluteniny kodowane przez kompleksowe loci Glu-1 są obiektem zainteresowania w hodowli odmian jakościowych pszenicy ze względu na (1) związek z jakością ziarna (2) i możliwością introgresji. Praca stanowi przegląd literatury dotyczącej zarówno możliwości introgresji w zbożach, jak i efektów uzyskanych dotychczas w zakresie zwiększania wartości technologicznej ziarna poprzez introgresje alleli Glu-1 wysokocząsteczkowych glutenin. Wykazano, iż wśród roślin zbożowych, introgresje genów Glu-1 uzyskano dotychczas w heksaploidalnej pszenicy T. aestivum L., diploidalnym życie (S. cereale L.), heksaploidalnym pszenżycie (x Triticosecale Witt.) i heksaploidalnym tritordeum. W introgresjach tych gatunki pszenicy (AA) diploidalnej T. monococcum L., T. boeoticum L. i (AA BB) tetraploidalnej jak T. durum Desf., T. dicoccum Schubl., T. turgidum L., T. dicoccoides Schweinf. oraz diploidalne gatunki kozieńców (DS DS) Ae. squarrosa L., (UU) Ae. umbellulata Zhuk., (MM) Ae. comosa Sibth. et Sm., (CC) Ae. markgrafii L. były źródłami nowych homeologicznych genów Glu-1 wysokocząsteczkowych glutenin i efektywnie wykorzystywanymi dla podwyższenia jakości ziarna u roślin zbożowych. Geny te wprowadzano do odmian za pomocą międzygatunkowych i międzyrodzajowych generatywnych krzyżowań zwiększających homologiczną koniugację chromosomów a także za pomocą manipulacji chromosomowych, z których translokacje okazały się najefektywniejszym sposobem wprowadzania obcej chromatyny. Introgresje genów Glu-1 wpływały jedynie na podwyższenie wskaźników technologicznych w sposób indywidualny jednak ich ekspresja technologiczna często była modyfikowana przez supresyjne loci systemu regulacyjnego, głównie genomu pszenicy.


Słowa kluczowe:

introgresje, loci Glu-1, wartość wypiekowa, wysokocząsteczkowe gluteniny

Aghaee-Sarbarzeh M., Ferrahi M, Singh S., Singh H., Friebe B., Gill B. S., Dhaliwal H. S. 2002. PH-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127: 377 — 382.
Google Scholar

Ahmad M., Arain M. A., Siddiqui K. A. 1997. Screening of Aegilops, Triticum, and Hordeum species for grain weight protein and lysine content. Wheat Inf. Service 85: 7 — 13.
Google Scholar

Alvarez M. L., Guelman S., Halford N. G., Lustig S., Reggiardo M. I., Ryabushkina N., Shewry P., Stin J., Vallejos R. H. 2000. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor. Appl. Genet. 100: 82 — 88.
Google Scholar

Amiour N., Bouguennec A., Marcoz C., Sourdille P., Bourgoin M., Khelifi D., Branlard G. 2002. Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe. Euphytica 123: 295 — 305.
Google Scholar

Anderson O. D., Abraham-Pierce F. A., Tam A. 1998. Conservation in wheat high-molecular-weight glutenin gene promotor sequences: comparisons among loci and among alleles of the Glu-B1-1 locus. Theor. Appl. Genet. 96: 568 — 576.
Google Scholar

Ballesteros J., Alvarez J. B., Gimenez M. J., Ramirez M. C., Cabrera A. Martin A. 2003 a. Introgression of 1D5 + 1Dy10 into Tritordeum. Theor. Appl. Genet. 106: 644 — 648.
Google Scholar

Ballesteros J., Ramirez M. C., Martinez C., Barro F., Martin A. 2003 b. Bread-making quality in hexaploid tritordeum with substitutions involving chromosome 1D. Plant Breed. 122: 89 — 97.
Google Scholar

Blanco A., Resta P., Simeone R., Parmar S., Shewry P. R., Sabelli P. W., Lafiandra D. 1991. Chromosomal location of seed storage protein genes in the genome of Dasypyrum villosum L. Candargy. Theor. Appl. Genet. 82: 358 — 362.
Google Scholar

Branlard G., Autran J.C., Monneveux P. 1989. High molecular weight glutenin subunits in durum wheat (Triticum durum). Theor. Appl. Genet. 78: 353 — 358.
Google Scholar

Branlard G., Dardevet M. 1995. Diversity of grain protein and bread wheat quality. II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J. Cereal Sci. 3: 345 — 355.
Google Scholar

Branlard G., Dardevet M., Saccomano R., Lagoutte F., Gourdon J. 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 119: 59 — 67.
Google Scholar

Brites C., Carrillo J. M. 2001. Influence of high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chem. 78, 1: 59 — 63.
Google Scholar

Budak H., Baenziger P. S., Beecher B. S., Graybosch R. A., Campbell B. T., Shipman M. J., Erayman M., Eskridge K. M. 2004. The effect of introgressions of wheat D-genome chromosomes into „Presto” triticale. Euphytica 137, 2: 261 — 270.
Google Scholar

Bushuk W. 1998. Wheat breeding for end-product use. Euphytica 100: 137 — 145.
Google Scholar

Cai X., Chen P.D., Xu S. S., Oliver R. E., Chen X. 2005. Utilization of alien genes to enhance Fusarium head blight resistance in wheat-A review. Euphytica 142, 3: 309 — 318.
Google Scholar

Carrillo J. M., Rousset M., Qualset C. O., Karsarda D. D. 1990. Use of recombinant inbred lines of wheat for study of associations of high-molecular weight glutenin subunit alleles to quantitative traits. I. Grain yield and quality prediction tests. Theor. Appl. Genet. 73: 321 — 330.
Google Scholar

Ceoloni C., Basili F., Biagetti M., Bitti A., Ciaffi M., Delre V., Pagnotta M.A., Vitellozzi F., Zhang X.Y. 1998. Progress report of wheat chromosome engineering with special reference to isolation and characterization of durum wheat transfer lines of potential breeding value. Proc.of the10th EWAC Meeting, Viterbo (Italy) (Ed. C. Ceoloni, Worland A. J.): 99 — 103.
Google Scholar

Chen P. D., Tsujimoto H., Gill B. S. 1994. Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor. Appl. Genet. 88: 97 — 101.
Google Scholar

Ciaffi M., Tomassini C., Porceddu E., Benedettelli S. 1990. Utilization of Triticum turgidum spp. dicoccoides for the improvement of the grain quality in durum wheat. In: W.Bushuk and R. Tkachuk (Eds.). Proc. 4th Int.Workshop Gluten Proteins(AACC, St.Paul, Minnesota): 672 — 687.
Google Scholar

Ciaffi M., Lafiandra M., Turchetta T., Ravaglia S., Bariana H., Gupta R., MacRitchie F. 1995. Breadmaking potential of durum wheat lines expressing both X- and Y-type subunits at the Glu-A1 locus. Cereal Chem. 72: 465 — 469.
Google Scholar

De Bustos A., Jouve N. 2003. Characterisation and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theor. Appl. Genetics 107, 1: 74 — 83.
Google Scholar

De Bustos A., Rubio P., Jouve N. 2001. Characterisation of two gene subunits on the 1R chromosome of rye as orthologous of each of the Glu-1 genes of hexaploid wheat. Theor. Appl. Genet. 103: 733 — 742.
Google Scholar

De Pace C., Snidaro D., Ciaffi M., Vittori D., Ciofo A., Cenci A., Tanzarella O.A., QualsetC.O., Scarascia Mugnozza G.T. 2001. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica 117: 67 — 75.
Google Scholar

Dessalegn T., Van Deventer C. S., Labuschagne M. T., Maartens H. 2003. B-LMW glutenin and y-gliadin composition of Ethiopian durum wheat genotypes and their association with some quality trait. Cereal. Res. Commun.. 31, 3-4: 453 — 457.
Google Scholar

Dhaliwal H. S., Garg M., Singh H., Chhuneja P., Kaur H. 2002 a. Transfer of HMW-glutenin subunits from wild wheat’s into Triticum durum and improvement of quality. Cereal Res. Commun. 30, 1-2: 173 — 180.
Google Scholar

Dhaliwal H. S., Harjit S., William M. 2002 b. Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterization of resistant derivatives. Euphytica 126: 153 — 159.
Google Scholar

Dong H., Cox T. S., Sears R. G., Lockhard G. L. 1991. High molecular weight glutenin genes: Effects on quality in wheat. Crop Sci. 31: 971 — 979.
Google Scholar

D’Ovidio R., Tanzarella O.A., Masci S., Lafiandra D., Porceddu E. 1992 a. RFLP and PCR analyses at Gli-1, Gli-2, Glu-1 and Glu-3 loci in cultivated and wild wheats. Hereditas 116: 79 — 85.
Google Scholar

D’Ovidio R., Tanzarella O .A., Porceddu E. 1992 b. Molecular analysis of gliadin and glutenin genes in T. durum cv. Lira. A model system to analyse the molecular bases of quality differences in durum wheat cultivars. J. Cer. Sci. 16: 165 — 172.
Google Scholar

Dvorak J., Kasarda D. D., Dietler M. D., Lew E. J. L., Anderson O. D., Litts J. C., Shewry P. R. 1986. Chromosomal location of seed storage protein genes in the genome of Elytrigia elongata. Can. J. Genet. Cytol. 28: 818 — 830.
Google Scholar

Dvorak J., Luo M. C., Yang Z. L., Zhang H. B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97: 657 — 670.
Google Scholar

Feldman M. 1966. The effect of chromosomes 5B, 5D and 5A on chromosomal pairing in Triticum aestivum. Proc. Nat. Acad. Sci. US 55: 1447 — 1453.
Google Scholar

Feng D., Xia G., Zhao S., Chen F. 2004. Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Theor. Appl. Genet. 110, 1: 136 — 144.
Google Scholar

Flavell R., Payne P. 1987. Introducing molecular biology into wheat breeding for better breadmaking quality. Biotechnology in Agriculture: 14 — 15.
Google Scholar

Forde J., Malpica J. M., Halford N. G., Shevry P. R., Anderson O. D., Green F. C. 1985. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum L.) Nucleic Acids Res. 13: 6817 — 6832.
Google Scholar

Gianibelli M. C., Echaide M., Larroque O. R., Carrillo J. M., Dubcovsky J. 2002 a. Biochemical and molecular characterisation of Glu-1 loci in Argentinean wheat cultivars. Euphytica 128: 61 — 73.
Google Scholar

Gianibelli M. C., Lagudah E. S., Wrigley C. W. 2002 b. Biochemical and genetic characterization of a monomeric storage protein (T1) with an unusually high molecular weight in Triticum tauschii. Theor. Appl. Genet. 104: 497 — 504.
Google Scholar

Halford N. G., Tatham A. S., Sui E., Daroda L., Dreyer T., Shewry P. R. 1992. Identification of a novel beta-turn-rich repeat motif in the D hordeins of barley. Biochim. Biophys. Acta 1122: 118 — 122.
Google Scholar

Hohmann U., Kazman M. E. 1998. Molecular, cytogenetical and biochemical characterisation of synthetic hexaploid triticale involving chromosome 1D. In: Current topics in plant cytogenetics related to plant improvement. (Ed. T. Lelley, V-Universitats VerlagVienna, Austria): 364 — 370.
Google Scholar

Hsam S. L. K., Kieffer R., Zeller F. J. 2001. Significance of Aegilops tauschii glutenin genes on breadmaking properties of wheat. Cereal Chem. 78(5): 521 — 525.
Google Scholar

Hsam S. L. K., Lapochkina I. F., Zeller F. J. 2003. Chromosomal location of genes for resistanceto powdery mildew in common wheat (Triticum aestivum L. em Thell.) 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica, 133, 3: 367 — 370.
Google Scholar

Jakobson I., Peusha H., Timofejeva L., Jarve K. 2006. Adult plant and seedling resistance to powdery mildew in a Triticum aestivum  Triticum militinae hybrid line. Theor. Appl. Genet. 112, 4: 760 — 769.
Google Scholar

Jimenez M., Dubcovsky J. 1999. Chromosome location of genes affecting polyphenol oxidase activity in common and durum wheat seeds. Plant Breeding 118: 395 — 398.
Google Scholar

Johansson E., Svensson G. 1995. Contribution of the high molecular weight subunit 21* to breadmaking quality of Swedish wheat’s. Cereal Chem. 72: 287 — 290.
Google Scholar

Juhasz A., Larroque O. R., Tamas L., Hsam S. L. K., Zeller F. J., Bekes F., Bedo Z. 2003. Bankuti 1201- an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 107: 697 — 704.
Google Scholar

Juhasz A., Tamas L., Karsai I., Vida G., Lang L., Bedo Z. 2001. Identification, cloning and characterisation of a HMW-glutenin gene from an old Hungarian wheat variety, Bankuti 1201. Euphytica 119 (1-2): 75 — 79.
Google Scholar

Kawakubo J., Taira T. 1992. Intergeneric hybrids between Aegilops squarrosa and Secale cereale and their meiotic chromosome behaviour. Plant Breed. 109: 108 — 115.
Google Scholar

Kazman E., Lelley T. 1994. Rapid incorporation of D-genome chromosomes into A and/or B genomes of hexaploid triticale. Plant Breed. 113: 89 — 98.
Google Scholar

Krattiger A. F., Payne P. I., Law C. N. 1987. The relative contribution of proteins and their components to breadmaking quality of varieties determined using chromosome substitution lines. In: Laszity R., Belas F. (eds). Proc. 3rd Int. Workshop gluten proteins. Budapest (Hungary): 254 — 265.
Google Scholar

Lafferty J., Lelley T. 2001. Introduction of high molecular weight glutenin subunits 5+10 forthe improvement of the bread-making quality of hexaploid triticale. Plant Breed. 120 (1): 33 — 37.
Google Scholar

Lawrence G. J., Mac Ritchie F., Wrigley C. W. 1988. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal Sci 7: 109 — 112.
Google Scholar

Leonova I,, Borner A., Budashkina E., Kalinina N., Unger O., Roder M., Salina F. 2004. Identification of microsatellite markers for a leaf rust resistance gene introgressed into common wheat from Triticum timopheevii. Plant Breeding 123, 1: 93 — 103.
Google Scholar

Li H. J., Arterburn M., Jones S. S., Murray T. D. 2005. Resistance to eyespot of wheat caused by Tapesia yallundae derived from Thinopyrum intermedium homoeologous group 4 chromosome. Theor. Appl. Genet. 111, 5: 932 — 940.
Google Scholar

Liu C. Y., Shepherd K. W. 1996. Variation of B subunits of glutenin in durum, wild and less-widely cultivated tetraploid wheats. Plant Breed. 115: 172 — 178.
Google Scholar

Liu Z., Sun Q., Ni Z., Nevo E., Yang T. 2002. Molecular characterization of a novel powdery mildew resistance gene Pm 30 in wheat originating from wild emmer. Euphytica 123: 21 — 29.
Google Scholar

Liu Z., Yan Z., Wan Y., Liu K., Zheng Y., Wang D. 2003. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor. Appl.Genet. 106:1368 — 1378.
Google Scholar

Lukaszewski A. J., Apolinarska B., Gustafson J. P. 1987. Introduction of the D-genome chromosomes from a bread wheat into hexaploid triticale with complete rye genome. Genome 29: 425 — 430.
Google Scholar

Lukaszewski A. J., Brzezinski W., Klockiewicz-Kaminska E. 2000. Transfer of the Glu-D1 locus encoding high molecular weight glutenin subunits 5+10 from breadwheat to diploid rye. Euphytica 115: 49 — 57.
Google Scholar

Lukaszewski A. J., Curtis C. A. 1992. Transfer of the Glu-D1 gene from chromosome 1D of breadwheat to chromosome 1R in hexaploid triticale. Plant Breed. 109: 203 — 210.
Google Scholar

Lukaszewski A .J., Curtis C. A. 1994. Transfer of the Glu-D1 gene from chromosome 1D to chromosome 1A in hexaploid triticale. Plant Breeding 112: 117 — 182.
Google Scholar

Ma J., Dong Y., Wang L., Wang X., Jia J. 2001. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120: 219 — 226.
Google Scholar

Mansur L. M., Qualset C. O., Kasarde D. D., Morris R. 1990. Effects of “Cheyenne” chromosomes on milling and baking quality of “Chinese Spring” wheat in relation to glutenin and gliadin storage proteins. Crop Sci. 30: 35 — 47.
Google Scholar

Marais G. F., McCallum B., Snyman J. E., Pretorius Z. A., Marais A. S. 2005. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breeding 124: 538 — 541.
Google Scholar

Marchylo B. A., Lukow O. M., Kruger J. E. 1992. Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats. J. Cereal Sci. 15: 29 — 37.
Google Scholar

Margiotta B., Urbano M., Colaprico G., Johansson E., Buonocore F., D’Ovidio R. D.,Lafiandra D. 1995. Bread wheat lines with both x- and y-type subunits at the Glu-A1 locus. Proc. of the Workshop Wheat Kernel Proteins. Molecular and functional aspects, S. Marino al Cimino, 1994: 135 — 138.
Google Scholar

Martin A., Alvarez J. B., Martin L. M., Barro F., Ballesteros J. 1999. The development of tritordeum: a novel cereal for food processing. J. Cereal Sci. 30: 85 — 95.
Google Scholar

Martin A., Cubero J. I. 1981. The use of Hordeum chilense in cereal breeding. Cereal Res. Commun. 9: 317 — 323.
Google Scholar

Martin J. M., Frohberg R. C., Morris C. F., Talbert L. E., Giroux M. J. 2001. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 41: 228 — 234.
Google Scholar

McIntosh R. A., Yamazaki Y., Devos K. M., Dubcoveky J., Rogers W. J., Appels R. 2003. Catalogue of gene symbols for wheat (MacGene 2003, CD-ROM). In: Pogna N.E., Romano M., Pogna E.A., Galterio G. (eds) Proceedings of the 10th International Wheat Genetics Symposium, vol.4 SIMI, Rome, Italy.
Google Scholar

Mesfin A., Frohberg R. C., Khan K., Olson T. C. 2000. Increased grain protein content and its association with agronomic and end-use quality in two hard red spring wheat populations derived from Triticum turgidum L. var. dicoccoides. Euphytica 116: 237 — 242.
Google Scholar

Mir-Ali N., Arabi M. I. E., Al-Safadi B. 1999. High molecular weight glutenin subunits composition of Syrian grown bread wheat and its relationships with gluten strength. J. Genet. Breed. 53: 237 — 245.
Google Scholar

Mohler V., Zeller F. J., Wenzel G., Hsam S.L. 2005. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 9. Gene MIZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 142, 1-2: 161 — 167.
Google Scholar

Nakamura H. 2000 a. Allelic variation at high-molecular-weight glutenin subunit loci, Glu-A1, Glu-B1 and Glu-D1, in Japanese and Chinese hexaploid wheats. Euphytica 112: 187 — 193.
Google Scholar

Nakamura H. 2000 b. The relationship between high-weight-molecular glutenin subunit composition and the quality of Japanese hexaploid wheat lines. J. Agric. Food Chem. 48: 2648 — 2652.
Google Scholar

Nakamura H. 2001. Genetic diversity of high-molecular-weight glutenin subunit compositions in landraces of hexaploid wheat from Japan. Euphytica 120: 227 — 234.
Google Scholar

Nakamura H., Inazu A., Hirano H. 1999. Allelic variation in high-molecular-weight glutenin subunit loci of Glu-1 in Japanese common wheats. Euphytica 106: 131 — 138.
Google Scholar

Nelson J.C., Andrescu C., Breseghello F., Finney P. L., Gualberto D. G., Bergman C. J., PenaR. J., Perretant M. R., Leroy P., Qualset C., Sorrells M. E. 2006. Quantitative trait locus analysis of wheat quality traits. Euphytica 149: 145 — 159.
Google Scholar

Oliver R. E., Cai X., Xu S. S., Chen X., Stack R. W. 2005. Wheat-alien species derivatives: a novel source of resistance to fusarium head blight in wheat. Crop Sci. 45: 1353 — 1360.
Google Scholar

Payne P. I., Holt L. M., Jackson E. A., Law C. N. 1984. Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Phil.Trans. R.Soc. Lond.B. 304: 359 — 371.
Google Scholar

Payne P. I., Holt L. M., Law C. N. 1981. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Part I. Allelic variation in subunits among varieties of wheat (Triticum aestivum L.). Theor. Appl. Genet. 60: 229 — 236.
Google Scholar

Payne P. I., Lawrence G. J. 1983. Catalogue of alleles for the complex gene loci Glu-A1, Glu-B1,Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11: 29 — 36.
Google Scholar

Payne P.I., Nightingale M. A., Krattiger A. F., Holt L. M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food. Agric. 40: 51 — 65.
Google Scholar

Perretant M. R., Cadalen T., Charmet G., Sourdille P., Nicolas P., Boeuf C., Tixier M. H., Branlard G., Bernard S., Bernard M. 2000. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor. Appl. Genet. 100: 1167 — 1175.
Google Scholar

Pestsova E. G., Borner A., Roder M. S. 2006. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor. Appl. Genet. 112, 4: 634 — 647.
Google Scholar

Pfluger L. A., D’Ovidio R. D., Margiotta B., Pena R. 2001. Characterisation of high- and low-molecular weight glutenin subunits associated to the D-genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor. Appl. Genet. 103: 1293 — 1301.
Google Scholar

Pilch J. 1981 a. Rye chromosome constitution and the amount of telomeric heterochromatin of the widely and narrowly adapted CIMMYT hexaploid triticales. Z. Pflanzenzüchtg. 87: 58 — 68.
Google Scholar

Pilch J. 1981 b. Analysis of the rye chromosome constitution and the amount of telomeric heterochromatin in the widely and narrowly adapted hexaploid triticales. Theor. Appl. Genet. 69: 145 — 149.
Google Scholar

Pilch J. 1987. Substytucje i delecje heterochromatynowe chromosomów żyta(Secale cereale L.) oraz ich związek z niektórymi cechami użytkowymi pszenżyta heksaploidalnego. Hod. Roślin Aklim. 30, z. 3/4: 1 — 52.
Google Scholar

Pilch J. 2002. Wartość technologiczna introgresywnych form pszenicy ozimej (Triticum aestivum L.). Biul. IHAR 223/224: 95 — 109.
Google Scholar

Pilch J. 2005 a. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozimej Triticum aestivum L. Cz. II. Efektywność w ulepszaniu cech kłosa i jakości ziarna. Biul. IHAR 235: 43 — 55.
Google Scholar

Pilch J. 2005 b. Genetyczne możliwości ulepszania jakości ziarna pszenicy ozimej Triticum aestivum L. w efekcie hybrydyzacji introgresywnej z Triticum durum Desf. Biul. IHAR 236: 5 — 15
Google Scholar

Pilch J. 2005 c. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozimej Triticum aestivum L. Cz. I. Zastosowanie systemów genetycznych pszenicy T. aestivum L. dla otrzymania mieszańców pomostowych F1. Biul. IHAR 235: 31 — 41.
Google Scholar

Pilch J. 2006 a. Effect of homoeologous pairing Ph 1-locus of Triticum aestivum L. on its F1 — bridge hybrids with the species (2x, 4x, 6x) Triticum L., (2x, 4x) Aegilops L., and (2x, 4x) Lolium L. genera. Plant Breed. Seed Sci. 54: 53 — 63.
Google Scholar

Pilch J. 2006 b. Allelic variation at HMW — glutenin loci Glu-1 related to high bread-making quality in hexaploid introgressives Triticum aestivum L./ Triticum durum Desf.Plant Breed. Seed Sci. 54: 39 — 52.
Google Scholar

Pilch J., Głowacz E., Cygankiewicz A. 1999. Wartość wypiekowa ziarna mieszańców pszenicy pochodzących z krzyżowań międzygatunkowych i międzyrodzajowych. Biul. IHAR 210: 71 — 83.
Google Scholar

Pomeranz Y., Williams P. C. 1990. Wheat hardness: its genetic, structural and biochemical background, measurements and significance. In: Y. Pomeranz (Ed.). Advances in Cereal Science and Technology (AACC, St. Paul, USA) 10: 471 — 544.
Google Scholar

Qu Q. L., Wei X. L., Satoh H., Kumamaru T. 2003. Biochemical and molecular characterization of a rice glutelin allele for the Glu A-1 gene. Theor.Appl.Genet.107: 20 — 25.
Google Scholar

Redaelli R., Pogna N.E., Ng P.K., 1997. Effects of prolamins encoded by chromosomes 1B and 1D on the rheological properties of dough in near-isogenic lines of bread wheat. Cer. Chem.. 74: 102 — 107.
Google Scholar

Rodriguez-Quijano M., Nieto-Taladriz M. T., Carrillo J. M. 2001. Polymorphism of high molecular weight glutenin subunits in three species of Aegilops. Genetic Resources and Crop Evolution 48: 599 — 607.
Google Scholar

Rogers W. J., Miller T. E., Payne P. I., Seekings J. A., Sayers E. J., Holt L. M., Law C. N. 1997. Introduction to bread wheat (Triticum aestivum L. and assessment for bread-making quality of alleles from T. boeoticum Boiss ssp. Thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica 93: 19 — 29.
Google Scholar

Rogers W. J., Payne P. I., Seekings J. A., Sayers E. J. 1991. Effect of bread-making quality of x-type and y-type high molecular weight subunits of glutenin. J. Cereal Sci. 14: 209 — 221.
Google Scholar

Rogers W.J., Rickatson J. M., Sayers E. J., Low C. N. 1990. Dosage effects of chromosomes of homoeologous groups 1 and 6 upon bread-making quality in hexaploid wheat. Theor. Appl. Genet. 80: 281 — 287.
Google Scholar

Rogers W. J., Sayers E. J., Ru K. L. 2001. Deficiency of individual high molecular weight glutenin subunits affords flexibility in breeding strategies for bread-making quality in wheat Triticum aestivum L. Euphytica 117: 99 — 109.
Google Scholar

Rong J. K., Millet B., Manisterski J., Feldman M. 2000. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115: 121 — 126.
Google Scholar

Rousset M., Brabant P., Kota R .S., Dubcovsky J., Dvorak J. 2001. Use of recombinant substitution lines for gene mapping and QTL analysis of bread making quality in wheat. Euphytica 119: 81 — 87.
Google Scholar

Sangtong V., Moran D., Chikwamba R., Wang K., Woodman-Clikeman W., Long M., Lee M., Scott M. 2002. Expression and inheritance of the wheat Glu-1Dx5 gene in transgenic maize. Theor. Appl. Genet. 105, 6-7: 937 — 945.
Google Scholar

Saponaro C., Pogna N. E., Castagna R., Pasquini M., Cacciatori P., Redaelli R. 1995. Allelic variation at the Gli-A1m, Gli-A2m and Glu-A1m loci and breadmaking quality in diploid wheat Triticum monococcum. Genet. Res. Camb. 66: 127 — 137.
Google Scholar

Schoenenberger N., Felber F., Savova-Bianchi D., Guadagnuolo R. 2005. Introgression of wheat DANN markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host  Triticum aestivum L. hybrids. Theor. Appl. Genet. 111, 7: 1338 — 1346.
Google Scholar

Sears E. R. 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19: 585 — 593.
Google Scholar

Sekiguchi S., Ono J., Taira T. 1993. Detection of HMW glutenin genes by DNA hybridization and bread baking quality of amphidiploid synthesized between Aegilops squarrosa and Secale cereale. Wheat Inf. Serv. 76: 77 — 79.
Google Scholar

Shewry P.R., Tatham A.S., Fido R., Jones H., Barcelo P., Lazzeri P.A. 2001. Improving the end use properties of wheat by manipulating the grain protein composition. Euphytica 119: 45 — 48.
Google Scholar

Tanaka H., Nakata N., Osawa M., Tomita M., Tsujimoto H., Yasumuro Y. 2003. Positive effect of the high-molecular-weight glutenin allele, Glu-D1d, on the bread-making quality of common wheat. Plant Breed. 122, 3: 279 — 286.
Google Scholar

Turchetta T., Ciaffi M., Porceddu E., Lafiandra D. 1995. Relationship between electrophoretic pattern of storage proteins and gluten strength in durum wheat landraces from Turkey. Plant Breed. 114: 406 — 412.
Google Scholar

Uhlen A. K., 1990. The composition of high molecular weight glutenin subunits in Norwegian wheats and their relation to bread -making quality. Norweg. J. Agric. Sci. 4: 1 — 17.
Google Scholar

Vitellozzi F., Ciaffi M., Dominici L., Ceoloni C. 1997. Isolation of a chromosomally engineered durum wheat line carrying the common wheat Glu-D1 d allele. Agronomie 17: 413 — 419.
Google Scholar

Wan Y., Wang D., Shewry P. R., Halford N. G. 2002. Isolation and characterization of five novel high-molecular-weight subunit genes from Triticum timopheevi and Aegilops cylindrica. Theor. Appl. Genet. 104: 828 — 839.
Google Scholar

Wan G., Yan Z., Liu K., Zheng Y., D’Ovidio R., Shewry P.R., Halford N.G., Wang D. 2005. Comparative analysis of the D genome-encoded high-molecular weight subunits of glutenin. Theor. Appl. Genet. 111, 6: 1183 — 1190.
Google Scholar

Wanous M., Munkvold J., Kruse J., Brachman E., Klawiter M., Fuehrer K. 2003. Identification of chromosome arms influencing expression of the HMW glutenins in wheat. Theor. Appl. Genet. 106, 2: 213 — 220.
Google Scholar

Watanabe N., Maum Akond A. S. M. G., Nachit M. M. 2006. Genetic mapping of the gene affecting polyphenol oxidase activity in tetraploid durum wheat. J. Appl. Genet. 47 (3): 201 — 205.
Google Scholar

Wieser H., Zimmermann G. 2000. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. Eur. Food Res. Technol. 210: 324 — 330.
Google Scholar

Williams M. D. H., Pena R. J., Mujeeb-Kazi A. 1993. Seed protein and isozyme variations in Triticum tauschi (Aegilops squarrosa). Theor. Appl. Genet. 87: 257 — 263.
Google Scholar

Yan Y., Hsam S. L. K., Yu J., Jiang Y., Zeller F. J. 2003. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE and capillary electrophoresis. Euphytica 130: 377 — 385.
Google Scholar

Yan Y., Zheng J., Xiao Y., Yu J., Hu Y., Cai M., Li Y., Hsam S. L. K., Zeller F. J. 2004. Identification and molecular characterization of a novel y-type Glu-Dt 1 glutenin gene of Aegilops tauschii. Theor. Appl. Genet. 108: 1349 — 1358.
Google Scholar

Yueming Y., Hsam S. L. K., Jiang Y., Zeller F. J. 2003. Allelic variation of the HMW glutenin subunits in Aegilops tauschi accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica 130: 377 — 385.
Google Scholar

Zemetra R. S., Morris R., Mattern P. J., Seip L. 1987. Gene locations for flour quality in winter wheat using reciprocal chromosome substitutions. Crop Sci. 27: 677 — 681.
Google Scholar

Zeven A. C., Waninge J. 1986. The degree of similarity of backcross lines of Triticumaestivum cultivars Manitou and Neepawa with Aegilops speltoides accessions as donors. Euphytica 35: 677 — 685.
Google Scholar

Pobierz


Opublikowane
03/30/2007

Cited By / Share

Pilch, J. (2007) „Efektywność introgresji genów Glu-1 wysokocząsteczkowych glutenin w zwiększaniu wartości wypiekowej ziarna zbóż — przegląd literatury”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (243), s. 25–45. doi: 10.37317/biul-2007-0069.

Autorzy

Józef Pilch 
j.pilch@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin, Zakład Oceny Jakości i Metod Hodowli Zbóż, Kraków Poland

Statystyki

Abstract views: 49
PDF downloads: 31


Licencja

Prawa autorskie (c) 2007 Józef Pilch

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.