Piramidyzacja genów — powszechne narzędzie używane w programach hodowlanych

Aleksandra Pietrusińska

a.pietrusinska@ihar.edu.pl
Instytut i Hodowli i Aklimatyzacji Roślin, Radzików, Krajowe Centrum Roślinnych Zasobów Genowych, Pracownia Gromadzenia i Oceny Roślin (Poland)

Jerzy H. Czembor


Instytut i Hodowli i Aklimatyzacji Roślin, Radzików, Krajowe Centrum Roślinnych Zasobów Genowych, Pracownia Gromadzenia i Oceny Roślin (Poland)

Abstrakt

łównym celem dzisiejszej produkcji roślinnej jest uzyskanie jak najwyższego plonu przy jednoczesnej minimalizacji stosowania środków ochrony roślin. Uprawa odmian o korzystnych cechach gospodarczych, w tym również o wysokim potencjale ich plonowania, ściśle związana jest z ich odpornością. Hodowla odpornościowa zbóż dysponuje wieloma narzędziami genetyki klasycznej i molekularnej, które z powodzeniem mogą być wykorzystywane w celu uzyskania roślin odpornych na powszechnie występujące choroby zbóż. Celem pracy było przedstawienie piramid genowych, uzyskanych w ramach różnych projektów badawczych realizowanych przez Pracownię Genetyki Stosowanej (Zakład Genetyki i Hodowli Roślin, IHAR — PIB w Radzikowie), a od 1. lutego 2016 roku realizowanych w Pracowni Gromadzenia i Oceny Roślin (Krajowe Centrum Roślinnych Zasobów Genowych, IHAR — PIB w Radzikowie). Profil prowadzonych prac obejmuje między innymi poprawę odporności pszenicy ozimej na mączniaka prawdziwego i rdzę brunatną.

Instytucje finansujące

Praca przeglądowa realizowana w ramach programu Badań Podstawowych na rzecz Postępu Biologicznego w Produkcji Roślinnej w latach 2014–2020 dofinansowana przez Ministerstwo Rolnictwa i Rozwoju Wsi, temat nr 9

Słowa kluczowe:

odpornośc odmian, geny odpornosci, mączniak prawdziwy, piramidy genowe, pszenica, rdza brunatna

Apolinarska B., Gruszecka D. 2001. Transfer genów z Dasypyrum villosum (Haynaldia villosa L.) do Secale cereale L. Biotechnologia 2 (53): 63 — 65.
Google Scholar

Bennett F. G. A. 1984. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant. Pathol. 33: 279 — 300.
Google Scholar

Blanco A., Gadaleta A., Cenci A., Carluccio A. V., Abdelbacki A. M. M., Simeone, R. 2008. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor. Appl. Genet. 117: 135 — 142.
Google Scholar

Brown-Guedira G. L., Singh S., Fritz, K. 2003. Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology 93 (7): 784 — 789.
Google Scholar

Cenci A., D’Ovidio R., Tanzarella O. A., Ceoloni C., Porceddu E. 1999. Identification of molecular markers linked to Pm13, and Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor. Appl. Genet. 98: 448 — 454.
Google Scholar

Charpe A., Koul S., Gupta S. K., Singh A., Pallavil J. K., Prabhu K. V. 2012. Marker assisted gene pyramiding of leaf rust resistance genes Lr24, Lr28 and Lr9 in a bread wheat cultivar HD2329.
Google Scholar

Chełkowski J., Koczyka G. 2005 a. Genomika i bioinformatyka roślin. Rozprawy i Monografie. IGR PAN, Poznań: 139 — 157.
Google Scholar

Chełkowski J., Stępień Ł., Strzembicka A. 2005 b. Ocena podatności pszenicy ozimej na rdzę brunatną oraz poszukiwanie źródeł odporności. Acta Agrobotanica 58 (1): 143 — 152.
Google Scholar

Chełkowski J., Koczyka G. 2005 a. Genomika i bioinformatyka roślin. Rozprawy i Monografie. IGR PAN, Poznań: 139 — 157.
Google Scholar

Chełkowski J., Stępień Ł. 2001. Molecular markers for leaf rust resistance genes in wheat. J. Appl. Genet. 42 (2): 117 — 126.
Google Scholar

Chen P. D., Qi L. L., Zhou B., Zhang S. Z., Liu D. J. 1995. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 91: 1125 — 1128.
Google Scholar

Chen X. M., Luo, Y. H., Xia X.C., Xia L.Q., Chen, X., Ren Z. L., He Z. H., Jia J. Z. 2005. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed. 124: 225 — 228.
Google Scholar

Czajowski G., Strzembicka A., Karska K. 2011. Wirulencja populacji Puccinia triticina sprawcy rdzy brunatnej pszenicy i pszenżyta. Konferencja Nauka dla Hodowli i Nasiennictwa Roślin Uprawnych. Streszczenia prac. Konferencja Nauka dla Hodowli i Nasiennictwa Roślin Uprawnych. Zakopane 2001.
Google Scholar

Czembor H. J., Wiewióra M. 2001. Dziedziczenie tolerancji na toksyczne działanie glinu u wybranych odmian pszenicy jarej (Triticum aestivum L.). 220: 45 — 52.
Google Scholar

Flor H. H. 1955. Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology 45: 680 — 685.
Google Scholar

Gnanesh B. N., Mitchell Fetch J., Menzies J. G., Beattie A. D., Eckstein P. E., McCartney C. A. 2013. Chromosome location and allele-specific PCR markers for marker-assisted selection of the oat crown rust resistance gene Pc91. Mol. Breeding 32: 679 — 686.
Google Scholar

Goutam U., Kukreja S., Yadav R., Salaria N., Thakur K., Goyal A. K. 2015. Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front Microbiol. 6: 861.
Google Scholar

Górny A. G. 2004. Zarys genetyki zbóż. Tom 1. Jęczmień, pszenica i żyto. Wyd. Instytut Genetyki Roślin PAN, Poznań: 181 — 327.
Google Scholar

Hao Y., Liu, A., Wang Y., Feng D., Gao J., Li X., Liu S., Wang H. 2008. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor. Appl. Genet. 117 (8): 1205 — 1212.
Google Scholar

Helguera M., Khan I. A., Dubcovsky J. 2000. Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theor. Appl. Genet. 100: 1137 — 1143.
Google Scholar

Hiebert C. W., Thomas J. B., McCallum B .D., Somers D. J. 2008. Genetic mapping of the wheat leaf rust resistance gene Lr60 (LrW2). Crop Sci. 48: 1020 — 1026.
Google Scholar

Hovhannisyan N. A., Dulloo M. E., Yesayan A. H., Knupffer H., Amari A. 2011. Tracking of powdery mildew and leaf rust resistance genes in Triticum boeticum and T. urartu, wild relatives of common wheat. Czech J. Plant Breed. 47 (2): 45 — 57.
Google Scholar

Hsam S. L. K., Lapochkina I. F., Zeller F. J. 2003. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell) 8. Gene Pm32 in a wheat Aegilops speltoides translocation line. Euphytica 133: 367 — 370.
Google Scholar

Huang X. Q., Röder M. S. 2004. Molecular mapping of powdery mildew resistance genes in wheat. Euphytica 137: 203 — 223.
Google Scholar

Huang L., Brooks S. A., Li W., Fellers J. P., Trick H. N., Gill B. S. 2003 a. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics 164: 655 — 664.
Google Scholar

Huang L., Gill B. S. 2001. An RGA — like marker detected all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor. Appl. Genet. 103: 1007 — 1013.
Google Scholar

Huang X. Q., Hsam S. L. K., Zeller F. J., Wenzel G., Mohler V. 2000. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor. Appl. Genet. 101: 407 — 414.
Google Scholar

Huang X. Q., Wang L. X., Xu M. X., Röder M. S. 2003 b. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 106: 858 — 865.
Google Scholar

Huerta-Espino J., Singh R. P., Pérez-López J. B. 2009. Phenotypic Variation Among Leaf Rust Isolates From Durum Wheat In Northwestern Mexico. 12th International Cereal Rust and Powdery Mildews Conference, October 13–16, Antalya — Turcja. Abstract Book, pp. 29.
Google Scholar

Hysing S. C., Merker A., Liljeroth E., Koebner R. M. D., Zeller F. J., Hsam S. L. K. 2007. Powdery mildew resistance in 155 Nordic bread wheat cultivars and landraces. Hereditas 144: 102 — 119.
Google Scholar

Hysing S. H., Singh R. P., Huerta-Espino J., Merker A., Liljeroth E., Diaz O. 2006. Leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum) cultivars grown in Northern Europe 1992–2002. Hereditas 143: 1 — 14.
Google Scholar

Jańczak C., Pawlak A. 2006. Występowanie i szkodliwość mącznika prawdziwego (Blumeria graminis) w pszenicy ozimej w latach 2003–2005. Postępy w Ochronie Roślin 46 (2): 538 — 542.
Google Scholar

Ji J., Qin B., Wang H., Cao A., Wang S., Chen P., Zhuang L., Du Y., Liu D., Wang X. 2008. STS markers for powdery mildew resistance gene Pm6 in wheat. Euphytica 163: 159 — 165.
Google Scholar

Kimber G., Feldman M. 1987. Wild wheat: an introduction. Department of Agronomy University of Missouri-Columbia, Columbia, Missouri, USA. Plant Genetics The Weizmann Institute of Science Rehovot, Israel.
Google Scholar

Kochman J., Węgorek W. 1997. Ochrona Roślin. Choroby infekcyjne: Wyd. V, Plantpress, Kraków: 445 — 447.
Google Scholar

Kolmer J. A. 1996. Genetics of resistance to wheat leaf rust. Annu. Rev. Phytopathol. 34: 435 — 455.
Google Scholar

Kowalczyk K., Hsam S. L. K, Zeller F. J. 1998. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.). XI. Cultivars grown in Poland. J. Appl. Genet. 39 (3): 225 — 236.
Google Scholar

Larson, S., Kadyrzhanova, D., McDonald, C., Sorrells M., Blake, T. K. 1996. Evaluation of barley Chromosome 3 yield QTL in a- backcross F2 Population using PCR-STS markers. Theor. Appl. Genet. 93: 618 — 625.
Google Scholar

Leśniowska-Nowak J., Grądzielewska A., Majek M. 2013. Identyfikacja genów odporności na rdzę brunatną w wybranych europejskich odmianach pszenicy zwyczajnej oraz opracowanie warunków Multiplex PCR. Annales Universitatis Mariae Curie-Skłodowska Lublin - Polonia Vol. LXVIII (3) SECTIO E: 20 — 28.
Google Scholar

Lillemo M., Asalf B., Singh R.P., Huerta-Espino J., Chen X. M., He Z. H., Bjørnstad A. 2008. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor. Appl. Genet. 116: 1155 — 1166.
Google Scholar

Liu Z., Sun Q., Ni Z., Yang T. 1999. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed. 118: 215 — 219.
Google Scholar

Liu J., Liu D., Tao W., Li W., Wang S., Chen P., Cheng S., Gao D. 2000. Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed. 119: 21 — 24.
Google Scholar

Liu Z., Sun Q., Ni Z., Nevo E., Yang T. 2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123: 21 — 29.
Google Scholar

Lopez-Pardo R., Barandalla L., Ritter E., de Galarreta J. I. R. 2013. Validation of molecular markers for pathogen resistance in potato. Plant Breeding 132: 246 — 251.
Google Scholar

Ma Z.Q., Wei J.B., Cheng S.H. 2004. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. Theor. Appl. Genet. 109: 140 — 145.
Google Scholar

Malepszy S. 2001. Biotechnologia Roślin. Wydawnictwo Naukowe PAN, Warszawa.
Google Scholar

McIntosh R. A., Hart G. E., Devos K. M., Gale M. D., Rogers W. J. 1998. Catalogue of gene symbols for wheat. In: Slinkard A. E. (ed.). Proc. 9th Int. Wheat Genet Symp. 5: 13 — 72. Univ. Extension Press. University of Saskatchewan Saskatoon.
Google Scholar

McIntosh R. A., Wellings C. R., Park R. F. 1995. Wheat Rust: an atlas of resistance genes. CSIRO, Australia, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Google Scholar

Mesterházy Á., Bartoš P., Goyeau H. 2000. European virulence survey for leaf rust in wheat. Agronomie 20: 793 — 804.
Google Scholar

Miranda L. M., Murphy J. P., Leath S., Marshall D. 2006. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor. Appl. Genet. 113: 1497 — 1504.
Google Scholar

Miranda L. M., Murphy J. P., Marshall D., Cowger C., Leath S. 2007. Pm35: a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor. Appl. Genet. 114: 1451 — 1456.
Google Scholar

Mohler V., Hsam S. L. K., Zeller F. J., Wenzel, G. 2001. An STS marker distinguishing the rye-derived poldery mildew resistance alleles At the Pm8/Pm17 locus of common Wheat. Plant Breed. 120: 448 — 450.
Google Scholar

Nematollahi G., Mohler V., Wenzel G., Zeller F. J., Hsam S. L. K. 2008. Microsatellite mapping of powdery mildew resistance allele Pm5d from common wheat line IGV1-455. Euphytica 159: 307 — 313.
Google Scholar

Neu C., Stein N., Keller B. 2002. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45: 737 — 744.
Google Scholar

Perugini L. D., Murphy J. P., Marshall D., Brown-Guedira G. 2008. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor. Appl. Genet. 116: 417 — 425.
Google Scholar

Pietrusińska A., Czembor J. H., Czembor P. Cz. 2011. Pyramiding of two resistance genes for leaf rust and powdery mildew resistance in common wheat. Cereal Research Comm. 39 (4): 577 — 588.
Google Scholar

Pietrusińska A., Czembor J. H. 2014. Struktura wirulencji populacji Blumeria graminis f. sp. tritici występującej na terenie Polski w latach 2012–2013. Biul. IHAR 274: 15 — 25.
Google Scholar

Pietrusińska A., Czembor P. Cz., Czembor J. H. 2013. Lr39 + Pm21, as a new effective combination of resistance genes for leaf rust and powdery mildew. Czech J. Genet. Plant Breed. 49: 109 — 115.
Google Scholar

Pietrusińska 2010. Wykorzystanie markerów molekularnych do wprowadzania genów odporności na rdzę brunatną (Puccinia recondita f. sp. tritici) i mączniaka prawdziwego (Blumeria graminis f. sp. tritici) do pszenicy ozimej. Biul. IHAR 256: 31 — 54.
Google Scholar

Prabhu K. V., Singh A. K., Basavaraj S. H., Cherukuri D. P., Charpe A., Gopala Krishnan S., Gupta S. K., Joseph M., Koul S., Mohapatra T., Pallavi J. K., Samsampour D., Singh A., Singh V. K., Singh A., Singh V. P. 2009. Marker assisted selection for biotic stress resistance in wheat and rice. Indian J. Genet 69 (4): 305 — 314.
Google Scholar

Robert O., Abelard C., Dedryve F. 1999. Identification of molecular markers for the detection of the yellow rust resistance genes Yr17 in wheat. Mol. Breed. 5:167 — 175.
Google Scholar

Saini R.G., Kaur M., Singh B., Sharma S., Nanda G. S., Nayar S. K. 2002. Lr48 and Lr49, noval hypersensitive adult plant leaf rust resistance genes in wheat (Triticum aestivum L.). Euphytica 124: 365 — 370.
Google Scholar

Seyfarth, R., Feuillet, C., Schachermayr, G., Messmer, M., Winzeler, M., Keller, B., 2000. Molecular mapping of the adult-plant leaf rust resistance gene Lr13 in wheat (Triticum aestivum L.). J. Genet. & Breed. 54: 193 — 198.
Google Scholar

Singh S., Sidhu J. S., Huang N., Vikal Y., Li Z., Brar D. S., Dhaliwal H. S., Khush G. S. 2001. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet. 102: 1011 — 1015.
Google Scholar

Singh R. P., McIntosh R. A. 1984. Complementary genes for resistance to Puccinia recondita tritici in Triticum aestivum II. Cytogenetic studies. Can. J. Genet. Cytol. 26: 736 — 742.
Google Scholar

Singh S., Franks C. D., Huang L., Brown-Guedira, G. L., Marshall D. S., Gill B.S. 2004. Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor. Appl. Genet. 108: 586 — 591.
Google Scholar

Singrün C., Hsam, S. L. K., Hartl L., Zeller F. J., Mohler V. 2003. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em, Thell.). Theor. Appl. Genet. 106: 1420 — 1424.
Google Scholar

Song W., Xie H., Liu Q., Xie C.J., Ni Z.F., Yang T. M., Sun Q., Liu Z. Y. 2007. Molecular identification of Pm12-carrying introgression line in wheat using genomic and EST-SSR markers. Euphytica 158: 95 — 102.
Google Scholar

Spielmeyer W., McIntosh, R. A., Kolmer J. 2005. Powdery mildew resistance and Lr34/Yr18 to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor. Appl. Genet. 111: 731 — 735.
Google Scholar

Stępień Ł., Golka L., Chełkowski J. 2003. Lear rust resistance genes of wheat: identification in cultivars and resistance sources. J. Appl. Genet. 44 (2): 139 — 149.
Google Scholar

Suenaga K., Singh R. P., Huberta-Espino J., William H. M. 2003. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for rust and stripe rust resistance in bread wheat. Phytopathology 93: 881 — 890.
Google Scholar

Tommasini L., Yahiaoui N., Srichumpa P., Keller B. 2006. Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor. Appl. Genet 114: 165 — 175.
Google Scholar

Tratwal A., Jakubowska M. 2004. Ocena przydatności systemów wspomagania decyzji o ochronie pszenicy ozimej przed mączniakiem prawdziwym na terenie Wielkopolski. Postępy w Ochronie Roślin 44: 1169 — 1172.
Google Scholar

Tyrka M., Chełkowski J. 2003. Enhancing the resistance of triticale by using genes from wheat and rye. J. Appl. Genet. 45 (3): 283 — 295.
Google Scholar

Vanzetti L. S., Campos P., Demichelis M., Lombardo L. A., Aurelia P. R., Vaschetto L. M., Bainotti C. T., Helguera M. 2011. Identification of leaf rust resistance genes in selected Argentinean bread wheat cultivars by gene postulation and molecular markers. Electronic Journal of Biotechnology ISSN: 0717-3458: 1 — 14.
Google Scholar

Vida G., Gál M., Uhrin A., Veisz O., Syed N. H., Flavell A. J., Wang Z., Bedő Z. 2009. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica 170: 67 — 76.
Google Scholar

William M., Langridge P., Trethowan R., Dreisigacker S., Crouch J. 2008. Genomics of wheat, the basis of our daily bread. Genomics of Tropical Plants 15: 515 — 548.
Google Scholar

William H. M., Crosby M., Trethowan R., Ginkel M., Mujeeb-Kazi A., Pfeiffer W., Khairallah M., Hoisington D. 2003. Molecular marker service laboratory at CIMMYT: An interface between the laboratory and the field. 10th Intern. Wheat Genet. Symp., Paestum, Italy 2: 852 — 854.
Google Scholar

Wiśniewska H., Błaszczyk L., Chełkowski J. 2007. Charakterystyka genotypów pszenicy pod kątem odporności na fuzariozę kłosów, mączniaka prawdziwego i rdzę brunatną. Postępy Nauk Rolniczych 6: 75 — 88.
Google Scholar

Witkowska K., Śmiałowski T., Witkowski E. 2011. Zależność plonu rodów pszenicy ozimej od stopnia porażenia przez Stagonospora nodorum i Puccinia triticina w zróżnicowanych warunkach polowych. Biul. IHAR 262: 47 — 58.
Google Scholar

Woźniak-Strzembicka A. 2003. Wirulencja populacji Puccinia recondita f. sp. tritici w Polsce w latach 1998–2001. Biul. IHAR 230: 109 — 117.
Google Scholar

Xie C., Sun Q., Ni Z., Yang T., Nevo E., Fahima T. 2003. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor. Appl. Genet. 106: 341 — 345.
Google Scholar

Yi Y. J., Liu H.Y., Haung X. Q., An L. Z., Wang F., Wang Z. L. 2008. Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Plant Breed. 127: 116 — 120.
Google Scholar

Zeller F. J., Lutz J., Reimlein E. I., Limpert E., Koenig J. 1993 a. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L). II. French cultivars. Agronomie 13: 201 — 207.
Google Scholar

Zhu Z., Zhou R., Kong X., Dong Y., Jia J. 2005. Microsatellite markers linked to a 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48: 585 — 590.
Google Scholar

http://www.raportrolny.pl/zboza
Google Scholar

http://www.pin.org.pl
Google Scholar

Pobierz


Opublikowane
12/31/2015

Cited By / Share

Pietrusińska, A. i Czembor, J. H. (2015) „Piramidyzacja genów — powszechne narzędzie używane w programach hodowlanych”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (278), s. 3–16. doi: 10.37317/biul-2015-0001.

Autorzy

Aleksandra Pietrusińska 
a.pietrusinska@ihar.edu.pl
Instytut i Hodowli i Aklimatyzacji Roślin, Radzików, Krajowe Centrum Roślinnych Zasobów Genowych, Pracownia Gromadzenia i Oceny Roślin Poland

Autorzy

Jerzy H. Czembor 

Instytut i Hodowli i Aklimatyzacji Roślin, Radzików, Krajowe Centrum Roślinnych Zasobów Genowych, Pracownia Gromadzenia i Oceny Roślin Poland

Statystyki

Abstract views: 180
PDF downloads: 68


Licencja

Prawa autorskie (c) 2015 Aleksandra Pietrusińska, Jerzy H. Czembor

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.