Yielding of winter wheat cultivars across environments — one-year multi-environment post-registration trial
Wiesław Mądry
wieslaw_madry@sggw.ed.plKatedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa (Poland)
Jakub Paderewski
Katedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa (Poland)
Jan Rozbicki
Katedra Agronomii, SGGW, Warszawa (Poland)
Dariusz Gozdowski
Katedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa (Poland)
Jan Golba
Katedra Agronomii, SGGW, Warszawa (Poland)
Mariusz Piechociński
Katedra Agronomii, SGGW, Warszawa (Poland)
Marcin Studnicki
Katedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa (Poland)
Adriana Derejko
Katedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa (Poland)
Abstract
The aim of the paper is adequate modification and presenting a statistical methodology to assess patterns of cultivar adaptive response to agricultural environments (agro-ecosystems) on the basis of complete Genotype × Crop Management × Location (G×M×L) data obtained from yearly multi-location two-factor trials conducted in a net of post-registration trials (PDOiR), empirical illustration of using and usefulness of this methodology applied to winter wheat grain yield. This statistical technique consists of three procedures, i.e. three-way ANOVA based on a fixed model, AMMI procedure for genotype x location interaction modeling and cluster analysis for classification of cultivar adaptive response described by AMMI-modeled (adjusted) genotype × location means calculated across two crop management intensities (A1 and A2). The considered methodology was an efficient tool to reliable classification of 28 winter wheat cultivars into cultivar groups that exhibited homogenous adaptive response to the environments. Then, it permits to identify cultivars showing wide or specific adaptation. It was revealed that in the season 2008/2009 Polish cultivar Bogatka (bred by DANKO Hodowla Roślin sp. z o.o.) and German cultivar Jenga (bred by Nordsaat Saatzucht¬gesellschaft mbH) showed wide adaptation to the testing environments. The remaining cultivars were locally adapted to some testing environments or some of them were not relatively adapted to the environments because they always yielded substantially below environmental means.
Supporting Agencies
Keywords:
AMMI analysis, cluster analysis, cultivar adaptation, grain yield, post-registration trials, winter wheatReferences
Anderson W.K. 2010. Closing the gap between actual and potential yield of rained wheat. The impacts of environment, management and cultivar. Field Crops Research 116: 14 — 22.
Google Scholar
Anderson W.K., Van Burgel A.J., Sharma D.L., Shackley B.J., Zaicou-Kunesch C.M., Miyan M.S., Amjad M. 2011. Assessing specific agronomic responses of wheat cultivars in a winter rainfall environment. Crop and Pasture Science 62: 115 — 124.
Google Scholar
Annicchiarico P. 2002. Genotype × environment interactions — challenges and opportunities for plant breeding and cultivar recommendations, FAO plant productions and protection paper 174. FAO, Rome
Google Scholar
Annicchiarico P. 2009. Coping with and exploiting genotype × environment interactions. In: Ceccarelli S., Guimarães E. P., Weltzien E. (eds), Plant Breeding and Farmer Participation, Food and Agricultural Organization, Rome: 519 — 564.
Google Scholar
Annicchiarico P., Chiapparino E., Perenzin M. 2010. Response of common wheat varieties to organic and conventional production systems across Italian locations, and implications for selection. Field Crops Res. 116: 230 — 238.
Google Scholar
Annicchiarico P., Iannucci A. 2008. Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments. Field Crops Res. 108: 133 — 142.
Google Scholar
Annicchiarico P., Pecetti L., Abdelguerfi A., Bouizgaren A., Carroni A. M., Hayek T., M’Hammadi Bouzina M., Mezni M. 2011 a. Adaptation of landrace and variety germplasm and selection strategies for lucerne in the Mediterranean basin. Field Crops Res. 120: 283 — 291.
Google Scholar
Annicchiarico P., Pecetti L., Bouzerzour H., Kallida R., Khedim A., Porqueddu C., Simoes N.M., Volaire F., Lelièvre F. 2011. Adaptation of contrasting cocksfoot plant types to agricultural environments across the Mediterranean basin. Environ. Experim. Bot. 74: 82 — 89.
Google Scholar
Ayoub M., Guertin S., Fregeau-Reid J., Smith D.L. 1994. Nitrogen fertilizer effect on breadmaking quality of hard red spring wheat in eastern Canada. Crop Sci. 34:.1346 — 1352.
Google Scholar
Basford K. E., Cooper M. 1998. Genotype x environment interactions and some considerations of their implications for wheat breeding in Australia. Austr. J. Agric. Res. 49: 153 — 174.
Google Scholar
Bradu D. Gabriel K.R. 1978. The biplot as a diagnostic tool for model of two-way tables. Technometrics 1978: 47 — 63.
Google Scholar
Carr P.M., Horsley R.D., Poland W.W. 2003. Tillage and seeding rate effects on wheat cultivars: I. grain production. Crop Sci. 43: 202 — 209.
Google Scholar
Casanoves F., Baldessari J., Balzarini M. 2005. Evaluation of multi environment trials of peanut cultivars. Crop Sci. 45: 18 — 26.
Google Scholar
Cornelius P.L., Crossa J., Seyedsadr M. 1996 Statistical tests and estimators of multiplicative models for genotype-by-environment interaction. In: Kang M.S., Gauch H.G. (Eds.), Genotype by Environment Interaction. CRC Press, Boca Raton: 199 — 234.
Google Scholar
Crossa J., Fox P.N., Pfeiffer W.H., Rajaram S., Gauch H.G. 1991. AMMI adjustment for statistical analysis of an international wheat yield trial. Theor. Appl. Genet. 81:27 — 37.
Google Scholar
Crossa J., Vargas M., Joshi A.K. 2010. Linear, bilinear, and linear-bilinear fixed and mixed models for analyzing genotype environment interaction in plant breeding and agronomy. Can. J. Plant Sci. 90:561 — 574.
Google Scholar
Dias C., Krzanowski W. 2003. Model selection and cross validation in additive main effect and multiplicative interaction models. Crop Sci. 43:865 — 873.
Google Scholar
COBORU. 2002. Zboża. Metodyka badania wartości odmian. COBORU, Słupia Wielka.
Google Scholar
Cooper M., Woodruff D.R., Phillips I.G., Basford K.E., Gilmour A. R. 2001. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Research, 69: 47 — 67.
Google Scholar
Denčić S., Mladenov N., Kobiljski B. 2011. Effects of genotype and environment on breadmaking quality in wheat. Int. J. Plant Prod. 5:71 — 82.
Google Scholar
Derejko A., Mądry W., Gozdowski D., Rozbicki J., Golba J., Piechociński M., Studnicki M. 2011. Wpływ odmian, miejscowości i intensywności uprawy oraz ich interakcji na plon pszenicy ozimej w doświadczeniach PDO. Biul. IHAR 259: 131 — 146.
Google Scholar
Dhungana P., Eskridge K.M., Baenziger P.S., Campbell B.T., Gill K.S., Dweikat I. 2007. Analysis of genotype-by-environment interaction in wheat using a structural equation model and chromosome substitution lines. Crop Sci. 47: 477 — 484.
Google Scholar
Elandt R. 1964. Statystyka matematyczna w zastosowaniu do doświadczalnictwa rolniczego. PWN, Warszawa.
Google Scholar
Fan X.M., Kang M.S., Chen H., Zhang Y., Tan J., Xu C. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agron. J. 99: 220 — 228.
Google Scholar
Gauch H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics 44:705 — 715
Google Scholar
Gauch H.G. 1992. Statistical analysis of regional yield trials. AMMI analysis of factorial designs. Elsevier Science, New York, NY.
Google Scholar
Gauch, H.G., Piepho H.P., Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48: 866 — 889.
Google Scholar
Gauch H. G., Zobel R.W. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37: 311 — 326.
Google Scholar
Geleta B., Atak M., Baenziger P.S., Nelson L.A., Baltenesperger D.D., Eskridge K.M., Shipman M.J., Shelton D.R. 2002. Seeding rate and genotype effect on agronomic performance and end-use quality of winter wheat. Crop Sci. 42: 827 — 832.
Google Scholar
Ma B.L., Yan W., Dwyer L.M., Fregeau-Reid J., Voldeng H. D., Dion Y., Nass H. 2004. Graphic analysis of genotype, environment, nitrogen fertilizer, and their interactions on spring wheat yield. Agron. J. 96: 169 — 180.
Google Scholar
Mądry W., Gacek E.S., Paderewski J., Gozdowski D., Drzazga T., 2011. Adaptive yield response of winter wheat cultivars across environments in Poland using combined AMMI and cluster analyses. Int. J. Plant Prod. 5: 299 — 310.
Google Scholar
Mądry W., Iwańska M. 2011. Przydatność metod oraz miar statystycznych do oceny stabilności i adaptacji odmian: przegląd literatury. Biul. IHAR 260/261: 193 — 218.
Google Scholar
McIntosh M.S 1983. Analysis of combined experiments. Crop Sci. 75:153 — 156.
Google Scholar
Mejza I. 1999. Planowanie serii doświadczeń dwuczynnikowych z rozszczepionymi jednostkami i analiza wyników. Roczniki Akademii Rolniczej w Poznaniu, vol. 301.
Google Scholar
Mintenko A. S., Smith S. R., Cattani D. J. 2002. Turfgrass evaluation of native grasses for the Northern Great Plains Region. Crop Sci. 42: 2018 — 2024.
Google Scholar
Miyan M.S., Impiglia A., Anderson W. K. 2011. Agronomic practices for durum wheat in an area new to the crop. Communications in Biometry and Crop Sci. 6: 64 — 79.
Google Scholar
Oscarsson M., Anderrsson R., Aman P., Jonsson A. 1998. Effects of cultivar, nitrogen fertilization rate and environment on yield and grain quality of barley. J. Sci. Food Agric. 78: 359 — 366.
Google Scholar
Paderewski J., Gauch H. G., Mądry W., Drzazga T., Rodrigues P. C. 2011 Yield response of winter wheat to agro-ecological conditions using additive main effects and multiplicative interaction and cluster analysis, Crop Sci. 51: 969 — 980.
Google Scholar
Paderewski J., Mądry W. 2012. Zastosowania modelu AMMI do analizy reakcji odmian na środowiska.
Google Scholar
Biul. IHAR 263: 161 — 188.
Google Scholar
Pena R. J. 2007. Current and future trends of wheat quality needs. In: Buck H. T., Nisi J. E., Salomon N. (Eds.). Wheat production in stressed environments. Springer Verlag: 411 — 424.
Google Scholar
R Development Core Team. 2009. R: A language and environment for statistical computing. Available at http://www.Rproject.org (verified 3 Dec. 2010). R Foundation for Statistical Computing, Vienna, Austria.
Google Scholar
SAS Institute. 2004. SAS system for Windows. v. 8.2. SAS Inst., Cary, NC.
Google Scholar
Schmidt J. P., Lamb J.A., Schmitt M.A., Randall G.W., Orf J. H., Gollany H. T. 2001. Soybean varietal response to liquid swine manure application. Agron. J. 93: 358 — 363.
Google Scholar
Sharma R. C., Morgounov A. I., Braun H.J., Akin B., Keser M., Bedoshvili D., Bagci A., Martius C., van Ginkel M. 2009. Identifying high yielding stable winter wheat genotypes for irrigated environments in Central and West Asia. Euphytica, 171: 53 — 64.
Google Scholar
Sivapalan S., O’Brien L., Ortiz-Ferrera G., Hollamby G. J., Barclay I., Martin P. J. 2000. An adaptation analysis of Australian and CIMMYT/ICARDA wheat germplasm in Australian production environments. Aust. J. Agric. Res. 51: 903 — 915.
Google Scholar
Souza E. J., Martin J.M., Guttieri M.J., O'Brien K. M., Habernicht D. K., Lanning S. P., McLean R., Carlson G. R., Talbert L. E. 2004. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci. 44: 425 — 432.
Google Scholar
Virk D. S., Witcombe J. R. 2008. Evaluating cultivars in unbalanced on-farm participatory trials. Field Crops Res. 106: 105 — 115.
Google Scholar
Yan W., Kang M.S. 2003. GGE Biplot Analysis: A Graphical tool for breeders, geneticists, and agronomists. CRC Press. Boca Raton, FL.
Google Scholar
Zhang Y., He Z., Zhang A., van Ginkel M., Ye G. 2006. Pattern analysis on grain yield of Chinese and CIMMYT spring wheat cultivars grown in China and CIMMYT. Euphytica 147: 409 — 420.
Google Scholar
Authors
Wiesław Mądrywieslaw_madry@sggw.ed.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa Poland
Authors
Jakub PaderewskiKatedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa Poland
Authors
Jan RozbickiKatedra Agronomii, SGGW, Warszawa Poland
Authors
Dariusz GozdowskiKatedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa Poland
Authors
Jan GolbaKatedra Agronomii, SGGW, Warszawa Poland
Authors
Mariusz PiechocińskiKatedra Agronomii, SGGW, Warszawa Poland
Authors
Marcin StudnickiKatedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa Poland
Authors
Adriana DerejkoKatedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa Poland
Statistics
Abstract views: 47PDF downloads: 39
License
Copyright (c) 2012 Wiesław Mądry, Jakub Paderewski, Jan Rozbicki, Dariusz Gozdowski, Jan Golba, Mariusz Piechocziński, Marcin Studnicki, Adriana Derejko
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Stanisław Pluta, Wiesław Mądry, Edward Żurawicz, Marcin Kozak, Statistical assessment of determination of fruit yield in blackcurrant (Ribes nigrum L.) by two multiplicative yield components , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Jakub Paderewski, Wiesław Mądry, Wiesław Pilarczyk, Tadeusz Drzazga, Retrospective study of yield response to environmental conditions in winter wheat cultivars using combined AMMI and cluster analysis to incomplete data: genetic progress for adaptability , Bulletin of Plant Breeding and Acclimatization Institute: No. 250 (2008): Regular issue
- Wiesław Mądry, Dariusz Gozdowski, Jan Rozbicki, Mirosław Pojmaj, Stanisław Samborski, Grain yield formation strategies in advanced lines of winter triticale grown in different environments , Bulletin of Plant Breeding and Acclimatization Institute: No. 244 (2007): Regular issue
- Tadeusz Drzazga, Jakub Paderewski, Paweł Krajewski, The estimation of winter wheat field response to variable environmental conditions in post-registration cultivar trials , Bulletin of Plant Breeding and Acclimatization Institute: No. 253 (2009): Regular issue
- Wiesław Mądry, Barbara Roszkowska-Mądra , The beauty and importance of old traditional orchards , Bulletin of Plant Breeding and Acclimatization Institute: No. 299 (2023): Regular issue
- Marcin Studnicki, Wiesław Mądry, Tadeusz Śmiałowski, Comparison of statistical methods to development of a core collection for a spring wheat collection , Bulletin of Plant Breeding and Acclimatization Institute: No. 252 (2009): Regular issue
- Wiesław Mądry, Adriana Derejko, Statistical methods for data analysis in the complete classification Cultivar × Crop Management × Location × Year (G×M×L×Y) from PVTS , Bulletin of Plant Breeding and Acclimatization Institute: No. 273 (2014): Regular issue
- Dariusz Gozdowski, Danuta Martyniak, Izabela Lipska, Evaluation of selected traits diversity in turf grass cultivars of red fescue and Kentucky bluegrass , Bulletin of Plant Breeding and Acclimatization Institute: No. 274 (2014): Regular issue
- Dariusz Gozdowski, Wiesław Mądry, Zdzisław Wyszyński, Maria Kalinowska-Zdun, Characteristics and empirical comparison of simple and complex path analysis in grain yield determination by yield - related traits. Part II. Example on spring barley , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Marcin Studnicki, Wiesław Mądry, Jan Schmidt, Multivariate analysis of genotypic diversity of agronomic traits in orchardgrass (Dactylis glomerata L.) germplasm collection , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue