Analysis of cause-and-effect relationships in agronomy and plant breeding

Marcin Kozak

mkozak@wsiz.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie (Poland)

Abstract

The paper discusses the cause-and-effect relationship systems in agronomy and plant breeding systems. The systems are limited to those which contain linear relationships between random variables. The following methods and problems are discussed: path analysis, sequential yield analysis, two-dimensional partitioning of yield variation, and analysis of cause-and-effect relationships for a population of genotypes. A theoretic discussion is based on biological aspects of plant development and their interaction with environment. The paper deals also with practical aspects of analyzing cause-and-effect relationships, pointing out interpretational possibilities of the methods discussed, but also their limitations.


Keywords:

path analysis, sequential yield analysis, two-dimensional partitioning of yield variation

Dewey D. R., Lu K. H. 1959. A correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agronomy Journal 51: 515 — 518.
Google Scholar

Dhungana P., Eskridge K.M., Baenziger P.S., Campbellc B.T., Gilld K.S., Dweikat I. 2007. Analysis of genotype-by-environment interaction in wheat using a structural equation model and chromosome substitution lines. Crop Science 47: 477 — 484.
Google Scholar

Dofing S. M., Knight C. W. 1992. Alternative model for path analysis of small-grain yield. Crop Science 32: 487 — 489.
Google Scholar

Dowe P. 1992. Wesley Salmon’s process theory of causality and the conserved quantity theory. Philosophy of Science 59 2: 195 — 216.
Google Scholar

Eaton, G. W. Kyte T. R. 1978. Yield component analysis in strawberry. Journal of the American Society for Horticultural Science 103: 578 — 583.
Google Scholar

Eaton G. W., MacPherson E. A. 1978. Morphological components of yield in cranberry. Horticultural Research 17: 73 — 82.
Google Scholar

García del Moral L. F., Rharrabti Y., Villegas D., Royo C. 2003. Evaluation of grain yield and its components in durum wheat under Mediterranean conditions: An ontogenetic approach. Agronomy Journal 95: 266 — 274.
Google Scholar

Gołaszewski J. 1996. A method of yield component analysis. Biometrical Letters 332: 79 — 88.
Google Scholar

Grafius J. E. 1969. Stress: a necessary ingredient of genotype by environment interactions. International Barley Genet. II. Wash. State Univ. Press.: 346 — 355.
Google Scholar

Guillen-Portal F. R., Stougaard R. N., Xue Q., Eskridge K. M. 2006. Compensatory mechanisms associated with the effect of spring wheat seed size on wild oat competition. Crop Science 46: 935 — 945.
Google Scholar

Jolliffe P. A., Courtney W. H. 1984. Plant growth analysis: additive and multiplicative components of growth. Annals of Botany 54: 243 — 254.
Google Scholar

Jończyk B. 2002. Statystyczna ocena uwarunkowania plonu pszenżyta ozimego przez jego składowe za pomocą analizy ścieżek pojedynczych i złożonych. Praca magisterska. Wydział Rolniczy SGGW, Warszawa.
Google Scholar

Kozak M. 2002. Statystyczna analiza uwarunkowania plonu roślin przez jego składowe. Praca doktorska. Wydział Rolniczy. Szkoła Główna Gospodarstwa Wiejskiego, Warszawa.
Google Scholar

Kozak M. 2006. Two-dimensional partitioning of yield variation: A critical note. Plant Breeding and Seed Science 53: 37 — 42.
Google Scholar

Kozak M. 2007. Ontogenetic chain and the Markov condition in crop science. Nature and Science 53: 5 — 8.
Google Scholar

Kozak M., Bocianowski J., Rybiński W. 2008. Selection of promising genotypes based on path and cluster analyses. Journal of Agricultural Science 146: 85 — 92.
Google Scholar

Kozak M., Gozdowski D., Hossain S., Ahmed S. E., Laudański Z., Wyszyński Z. 2006 a. Canonical correlations in studying grain yield and protein content as affected by yield components: An ontogenetic approach. Plant Breeding and Seed Science 54: 17 — 27.
Google Scholar

Kozak M., Gozdowski D., Wyszyński Z. 2006 b. An approach to analyzing a response variable as affected by its additive components: Example for spring barley grain yield. Cereal Research Communications 342-3: 981 — 988.
Google Scholar

Kozak M., Kang M. S. 2006. Note on modern path analysis in application to crop science. Communications in Biometry Crop Science 11: 32 — 34.
Google Scholar

Kozak M., Mądry W. 2006. Note on yield component analysis. Cereal Research Communications 34 2 — 3: 933 — 940.
Google Scholar

Kozak M., Mądry W., Wyszyński Z. 2002. Metoda analizy wpływu masy korzeni z różnych frakcji na plon korzeni buraka cukrowego. Fragmenta Agronomica 2 74: 251 — 262.
Google Scholar

Kozak M., Kang M.S., Stępień M. 2007a. Causal Pathways when Independent Variables are Co-Related: New Interpretational Possibilities. Plant, Soil and Environment 536: 267 — 275.
Google Scholar

Kozak M., Samborski S., Rozbicki J., Mądry W. 2007b. Winter triticale grain yield, a comparative study of 15 genotypes. Acta Agriculturae Scandinavica. Section B – Plant & Soil Science 57: 263 — 270.
Google Scholar

Kozak M., Singh P.K., Verma M.R., Hore D.K. 2007c. Causal mechanism for determination of grain yield and milling quality of lowland rice. Field Crops Research 102: 178 — 184.
Google Scholar

Lorencetti C., de Carvalho F.I.F., de Oliveira A. C., Valério I.P., Hartwig I., Benin G., Schmidt D.A.M. 2006 Applicability of phenotypic and canonic correlations and path coefficients in the selection of oat genotypes. Scientia Agricola 63: 11 — 19.
Google Scholar

Mądry W., Kozak M. 2000. Analiza ścieżek i sekwencyjna analiza plonu w badaniach zależności plonu od cech łanu. Cz. I. Opis metod. Roczniki Nauk Rolniczych. Seria A 115: 143 — 157.
Google Scholar

Mądry W., Kozak M., Pluta S., Żurawicz E. 2005. A new approach to sequential yield component analysis SYCA: Application to fruit yield in blackcurrant Ribes nigrum L.. Journal of New Seeds 7 1: 85 — 107.
Google Scholar

Mądry W., Laudański Z., Kozak M., Rozbicki J. 2003. Empiryczne porównanie sekwencyjnej analizy składowych plonu i analizy ścieżek pojedynczych dla plonu ziarna pszenżyta ozimego i jego składowych. Biuletyn IHAR 230: 147 — 156.
Google Scholar

Mohammadi S. A., Prasanna B. M., Singh N.N. 2003. Sequential path model for determining interrelationships among grain yield and related characters in maize. Crop Science 43: 1690 — 1697.
Google Scholar

Piepho H. P. 1995. A simple procedure for yield component analysis. Euphytica 84: 43 — 48.
Google Scholar

Rasmusson D. C., Cannell R. Q. 1970. Selection for grain yield and components of yield in barley. Crop Science 10: 51 — 54.
Google Scholar

Reese R. A. 2004. Does significance matter? Significance 1: 39 — 40.
Google Scholar

Rencher A. C. 1998. Multivariate statistical inference and applications. John Wiley and Sons, New York.
Google Scholar

Reynolds M., Calderini D., Condon A., Vargas M. 2007. Association of source/sink traits with yield biomass and radiation use efficiency among random sister lines from three wheat crosses in a high-yield environment. The Journal of Agricultural Science 1451: 3 — 16.
Google Scholar

Rozbicki J. 1997. Agrotechniczne uwarunkowania wzrostu, rozwoju i plonowania pszenżyta ozimego. Rozprawa habilitacyjna. Fundacja Rozwój SGGW, Warszawa.
Google Scholar

Samborski S., Kozak M., Rozbicki J. 2006. The usefulness of chlorophyll meter SPAD-502 for winter triticale grain yield estimation. Folia Universitas Agriculturae Stetinensis. Agricultura 247 100: 157 — 162.
Google Scholar

Samonte S.O.P.B., Wilson L.T., McClung A.M. 1998. Path analyses of yield and yield-related traits of fifteen diverse rice genotypes. Crop Science 38: 1130 — 1136.
Google Scholar

Shipley B. 2002. Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge.
Google Scholar

Sinebo W. 2002. Yield relationships of barleys in a tropical highland environment. Crop Science 42: 428 — 437.
Google Scholar

Singh P. K., Mishra M. N., Hore D. K., Verma M.R. 2006. Genetic divergence in lowland rice of north eastern region of India. Communications in Biometry and Crop Science 11: 35 — 40.
Google Scholar

Steel D. 2005. Indeterminism and the causal Markov condition. The British Journal for the Philosophy of Science 56 1: 3 — 26.
Google Scholar

Thomas R.L., Grafius J.E., Hahn S.K. 1971. Transformation of sequential quantitative characters. Heredity 26: 189 — 193.
Google Scholar

Vargas M., Crossa J. Reynolds M.P., Dhungana P., Eskridge K.M. 2007. Structural equation modeling for studying genotype × environment interactions of physiological traits affecting yield in wheat. The Journal of Agricultural Science 1452: 151 — 161.
Google Scholar

Webster R. 2001. Statistics to support soil research and their presentation. European Journal of Soil Science 52: 331 — 340.
Google Scholar

Wolfe L.M. 1999. Sewall Wright on the method of path coefficients: An annotated biography. Structural Equations Modeling 63: 280 — 291.
Google Scholar

Wright S. 1921. Correlation and causation. Journal of Agricultural Research Wash., D.C 20: 557 — 585.
Google Scholar

Wright S. 1934. The method of path coefficients. Annals of Mathematical Statistics 5: 161 — 215.
Google Scholar


Published
2011-03-31

Cited by

Kozak, M. (2011) “Analysis of cause-and-effect relationships in agronomy and plant breeding”, Bulletin of Plant Breeding and Acclimatization Institute, (259), pp. 3–21. doi: 10.37317/biul-2011-0053.

Authors

Marcin Kozak 
mkozak@wsiz.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Poland

Statistics

Abstract views: 57
PDF downloads: 41


License

Copyright (c) 2011 Marcin Kozak

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.