MLP artificial neural networks in predicting the yield if spring barley

Monika Janaszek-Mańkowska

monika_janaszek@sggw.pl
Wydział Inżynierii Produkcji, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie (Poland)
https://orcid.org/0000-0003-0855-9098

Dariusz R. Mańkowski


Zakład Nasiennictwa i Nasionoznawstwa, IHAR — PIB Radzików (Poland)
https://orcid.org/0000-0002-7499-8016

Janusz Kozdój


Zakład Biotechnologii i Cytogenetyki Roślin, IHAR — PIB Radzików (Poland)

Abstract

In cereal plants, individual yielding characteristics and the morphological structure of the spike are formed in certain phases of development, which occur in varying environmental conditions. The interaction of genotype with the biotic and abiotic environmental factors during the period of vegetation also affects the formation of yield. In this paper we approximate the yield on the basis of traits that characterize not only the vegetation period, but also the phase of full maturity. For the approximation, an MLP network with a very simple topology, resulting from both the number and structure of available data, was used. The effect of network training was positive. The results obtained show clearly that the MLP network may be used as a support tool for the prediction of the yield of spring barley.


Keywords:

artificial neural networks, DH lines, MLP, spring barley, yield prediction

Cybenko G. 1988. Continuous valued neural networks with two hidden layers are sufficient. Technical Report. Department of Computer science, Tufts University, Medford.
Google Scholar

Cybenko G. 1989. Approximation by superposition’s of a sigmoidal function. Mathematics of Control, Signals, and Systems 2: 303 — 314.
Google Scholar

Gatnar E. 2009. Analiza dyskryminacyjna. W: Statystyczna analiza danych z wykorzystaniem programu R, Walesiak M., Gatnar E. (red.). PWN, Warszawa.
Google Scholar

Górny A. G. 2004. Zarys genetyki jęczmienia (Hordeum vulgare L.). W: Zarys genetyki zbóż. Praca zbiorowa pod red. A. G. Górnego. t. 1: 15 — 80.
Google Scholar

Hush D., Horne B. 1993. Progress in supervised neural networks. IEEE Signal Processing Magazine, January: 8 — 39.
Google Scholar

Khazaei J., Naghavi M. R., Jahansouz M. R., Salimi-Khorshidi G. 2008. Yield estimation and clustering of chickpea genotypes using soft computing techniques. Agron. J. 100 (4): 1077 — 1087.
Google Scholar

Klepper B., Rickman R.W., Waldman S., Chevalier P. 1998. The physiological life cycle of wheat: Its use in breeding and crop management. Euphytica 100: 341 — 347.
Google Scholar

Kozdój J. 1992. Wpływ wybranych czynników środowiska na morfogenezę kłosa i potencjał plonotwórczy zbóż. Biul. IHAR 183: 59 — 71.
Google Scholar

Kozdój J. 1994. Wzrost i rozwój rośliny zbożowej — badania botaniczne a praktyka rolnicza. Biul. IHAR 192: 3 — 21.
Google Scholar

Kozdój J., Mańkowski D. R., Oleszczuk S. 2010. Analiza potencjału plonotwórczego linii podwojonych haploidów jęczmienia jarego (Hordeum vulgare L.) otrzymanych na drodze androgenezy. Biul. IHAR 256: 97 — 116.
Google Scholar

Łubkowski Z. 1968. Jęczmień, Wyd. 2. PWRiL, Warszawa.
Google Scholar

Mittal G. S., Zhang J. 2000. Prediction of temperature and moisture content of frankfurters during thermal processing using neural network. Meat Sci. 55: 13—24.
Google Scholar

Nghia D. D. 2000. Sieci neuronowe w zastosowaniu do rozpoznawania i klasyfikacji wzorców. Rozprawa doktorska. Wydział Elektryczny, Politechnika Warszawska.
Google Scholar

O’Neal M. R., Engel B. A., Ess D. R., Frankenberger J. R. 2002. Neural network prediction of maize field using alternative data coding algorithms. Biosyst. Eng. 83: 31 — 45.
Google Scholar

Osowski S. 1996. Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa.
Google Scholar

Osowski S. 2006. Sieci neuronowe do przetwarzania informacji. WPW, Warszawa.
Google Scholar

Park S. J., Hwang C. S., Vlek P. L. G. 2005. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric. Syst. 85: 59 — 81.
Google Scholar

Rawlings J. O., Pantula S. G., Dickey D. A. 2001. Applied Regression Analysis — a Research Tool. Second Edition. New York, USA: Springer-Verlag Inc.
Google Scholar

Rosenblatt F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65 (6): 386 — 408.
Google Scholar

SAS Institute Inc. 2009. SAS/STAT 9.2 User’s Guide, Second Edition. Cary, NC, USA: SAS Publishing, SAS Institute Inc.
Google Scholar

Seyhan A. T., Tayfur G., Karakurt M., Tangolu M. 2005. Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites. Comput. Mater. Sci. 34: 99 — 105.
Google Scholar

Tadeusiewicz R. 1993. Sieci neuronowe, Wyd. 2. Akademicka Oficyna Wydawnicza, RM., Warszawa.
Google Scholar

Tompos A., Margitfalvi J. L., Tfirst E., Heberger K. 2007. Predictive performance of “highly complex” artificial neural networks. Appl. Catal. A 324: 90 — 93.
Google Scholar

Trajer J. 2001. Modelowanie procesu przechowywania warzyw w wybranych jego aspektach. Rozprawy naukowe i monografie. Wydawnictwo SGGW, Warszawa.
Google Scholar

Uno Y., Prasher S. O., Lacroix R., Goel P. K., Karimi Y., Viau A., Patel R. M. 2005. Artificial neural networks to predict corn yield from Compact Airborn Spectrographic Imager data. Comput. Electron. Agric. 47: 149 — 161.
Google Scholar

Wójcik A. R., Laudański Z. 1989. Planowanie i wnioskowanie statystyczne w doświadczalnictwie. Warszawa: PWN.
Google Scholar

Zadoks J. C., Chang T. T., Konzak C. F. 1974. A decimal code for the growth stages of cereals. EUCARPIA Bulletin. Vol. 7: 42 — 52.
Google Scholar


Published
2011-03-31

Cited by

Janaszek-Mańkowska, M., Mańkowski, D. R. and Kozdój, J. (2011) “MLP artificial neural networks in predicting the yield if spring barley ”, Bulletin of Plant Breeding and Acclimatization Institute, (259), pp. 93–112. doi: 10.37317/biul-2011-0060.

Authors

Monika Janaszek-Mańkowska 
monika_janaszek@sggw.pl
Wydział Inżynierii Produkcji, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Poland
https://orcid.org/0000-0003-0855-9098

Authors

Dariusz R. Mańkowski 

Zakład Nasiennictwa i Nasionoznawstwa, IHAR — PIB Radzików Poland
https://orcid.org/0000-0002-7499-8016

Authors

Janusz Kozdój 

Zakład Biotechnologii i Cytogenetyki Roślin, IHAR — PIB Radzików Poland

Statistics

Abstract views: 167
PDF downloads: 64


License

Copyright (c) 2011 Monika Janaszek-Mańkowska, Dariusz R. Mańkowski, Janusz Kozdój

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

<< < 1 2 3