MLP artificial neural networks in predicting the yield if spring barley
Monika Janaszek-Mańkowska
monika_janaszek@sggw.plWydział Inżynierii Produkcji, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie (Poland)
https://orcid.org/0000-0003-0855-9098
Dariusz R. Mańkowski
Zakład Nasiennictwa i Nasionoznawstwa, IHAR — PIB Radzików (Poland)
https://orcid.org/0000-0002-7499-8016
Janusz Kozdój
Zakład Biotechnologii i Cytogenetyki Roślin, IHAR — PIB Radzików (Poland)
Abstract
In cereal plants, individual yielding characteristics and the morphological structure of the spike are formed in certain phases of development, which occur in varying environmental conditions. The interaction of genotype with the biotic and abiotic environmental factors during the period of vegetation also affects the formation of yield. In this paper we approximate the yield on the basis of traits that characterize not only the vegetation period, but also the phase of full maturity. For the approximation, an MLP network with a very simple topology, resulting from both the number and structure of available data, was used. The effect of network training was positive. The results obtained show clearly that the MLP network may be used as a support tool for the prediction of the yield of spring barley.
Keywords:
artificial neural networks, DH lines, MLP, spring barley, yield predictionReferences
Cybenko G. 1988. Continuous valued neural networks with two hidden layers are sufficient. Technical Report. Department of Computer science, Tufts University, Medford.
Google Scholar
Cybenko G. 1989. Approximation by superposition’s of a sigmoidal function. Mathematics of Control, Signals, and Systems 2: 303 — 314.
Google Scholar
Gatnar E. 2009. Analiza dyskryminacyjna. W: Statystyczna analiza danych z wykorzystaniem programu R, Walesiak M., Gatnar E. (red.). PWN, Warszawa.
Google Scholar
Górny A. G. 2004. Zarys genetyki jęczmienia (Hordeum vulgare L.). W: Zarys genetyki zbóż. Praca zbiorowa pod red. A. G. Górnego. t. 1: 15 — 80.
Google Scholar
Hush D., Horne B. 1993. Progress in supervised neural networks. IEEE Signal Processing Magazine, January: 8 — 39.
Google Scholar
Khazaei J., Naghavi M. R., Jahansouz M. R., Salimi-Khorshidi G. 2008. Yield estimation and clustering of chickpea genotypes using soft computing techniques. Agron. J. 100 (4): 1077 — 1087.
Google Scholar
Klepper B., Rickman R.W., Waldman S., Chevalier P. 1998. The physiological life cycle of wheat: Its use in breeding and crop management. Euphytica 100: 341 — 347.
Google Scholar
Kozdój J. 1992. Wpływ wybranych czynników środowiska na morfogenezę kłosa i potencjał plonotwórczy zbóż. Biul. IHAR 183: 59 — 71.
Google Scholar
Kozdój J. 1994. Wzrost i rozwój rośliny zbożowej — badania botaniczne a praktyka rolnicza. Biul. IHAR 192: 3 — 21.
Google Scholar
Kozdój J., Mańkowski D. R., Oleszczuk S. 2010. Analiza potencjału plonotwórczego linii podwojonych haploidów jęczmienia jarego (Hordeum vulgare L.) otrzymanych na drodze androgenezy. Biul. IHAR 256: 97 — 116.
Google Scholar
Łubkowski Z. 1968. Jęczmień, Wyd. 2. PWRiL, Warszawa.
Google Scholar
Mittal G. S., Zhang J. 2000. Prediction of temperature and moisture content of frankfurters during thermal processing using neural network. Meat Sci. 55: 13—24.
Google Scholar
Nghia D. D. 2000. Sieci neuronowe w zastosowaniu do rozpoznawania i klasyfikacji wzorców. Rozprawa doktorska. Wydział Elektryczny, Politechnika Warszawska.
Google Scholar
O’Neal M. R., Engel B. A., Ess D. R., Frankenberger J. R. 2002. Neural network prediction of maize field using alternative data coding algorithms. Biosyst. Eng. 83: 31 — 45.
Google Scholar
Osowski S. 1996. Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa.
Google Scholar
Osowski S. 2006. Sieci neuronowe do przetwarzania informacji. WPW, Warszawa.
Google Scholar
Park S. J., Hwang C. S., Vlek P. L. G. 2005. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric. Syst. 85: 59 — 81.
Google Scholar
Rawlings J. O., Pantula S. G., Dickey D. A. 2001. Applied Regression Analysis — a Research Tool. Second Edition. New York, USA: Springer-Verlag Inc.
Google Scholar
Rosenblatt F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65 (6): 386 — 408.
Google Scholar
SAS Institute Inc. 2009. SAS/STAT 9.2 User’s Guide, Second Edition. Cary, NC, USA: SAS Publishing, SAS Institute Inc.
Google Scholar
Seyhan A. T., Tayfur G., Karakurt M., Tangolu M. 2005. Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites. Comput. Mater. Sci. 34: 99 — 105.
Google Scholar
Tadeusiewicz R. 1993. Sieci neuronowe, Wyd. 2. Akademicka Oficyna Wydawnicza, RM., Warszawa.
Google Scholar
Tompos A., Margitfalvi J. L., Tfirst E., Heberger K. 2007. Predictive performance of “highly complex” artificial neural networks. Appl. Catal. A 324: 90 — 93.
Google Scholar
Trajer J. 2001. Modelowanie procesu przechowywania warzyw w wybranych jego aspektach. Rozprawy naukowe i monografie. Wydawnictwo SGGW, Warszawa.
Google Scholar
Uno Y., Prasher S. O., Lacroix R., Goel P. K., Karimi Y., Viau A., Patel R. M. 2005. Artificial neural networks to predict corn yield from Compact Airborn Spectrographic Imager data. Comput. Electron. Agric. 47: 149 — 161.
Google Scholar
Wójcik A. R., Laudański Z. 1989. Planowanie i wnioskowanie statystyczne w doświadczalnictwie. Warszawa: PWN.
Google Scholar
Zadoks J. C., Chang T. T., Konzak C. F. 1974. A decimal code for the growth stages of cereals. EUCARPIA Bulletin. Vol. 7: 42 — 52.
Google Scholar
Authors
Monika Janaszek-Mańkowskamonika_janaszek@sggw.pl
Wydział Inżynierii Produkcji, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Poland
https://orcid.org/0000-0003-0855-9098
Authors
Dariusz R. MańkowskiZakład Nasiennictwa i Nasionoznawstwa, IHAR — PIB Radzików Poland
https://orcid.org/0000-0002-7499-8016
Authors
Janusz KozdójZakład Biotechnologii i Cytogenetyki Roślin, IHAR — PIB Radzików Poland
Statistics
Abstract views: 167PDF downloads: 64
License
Copyright (c) 2011 Monika Janaszek-Mańkowska, Dariusz R. Mańkowski, Janusz Kozdój
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Zbigniew Laudański, Dariusz R. Mańkowski, Leszek Sieczko, Attempt to evaluate winter wheat cultivation technology on the basis of survey data from individual farms. Part II. Evaluation of cultivation technology , Bulletin of Plant Breeding and Acclimatization Institute: No. 244 (2007): Regular issue
- Dariusz R. Mańkowski, Zbigniew Laudański, Biological progress in breeding, seed technology and production of potato in Poland. Part II. Estimation of quantitative breeding and cultivar progress based on cultivar trials 1957–2003 , Bulletin of Plant Breeding and Acclimatization Institute: No. 251 (2009): Regular issue
- Leszek Domański, Dariusz R. Mańkowski, Bogdan Flis, Henryka Jakuczun, Ewa Zimnoch-Guzowska, Multivariate analysis of phenotypic diversity in the tetraploid × diploid hybrid progenies of potatoes , Bulletin of Plant Breeding and Acclimatization Institute: No. 264 (2012): Regular issue
- Zygmunt Kaczmarek, Dariusz R. Mańkowski, An introduction to multivariate statistical analyses. Part II. The application , Bulletin of Plant Breeding and Acclimatization Institute: No. 259 (2011): Regular issue
- Damian Gołębiewski, Kinga Myszka, Janusz Burek, Dariusz R. Mańkowski, Danuta Boros, Study of genetic variation and environmental impact on traits that determine malting quality of spring barley lines included in preliminary trials in 2011 , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue
- Dariusz R. Mańkowski, Zbigniew Laudański, Danuta Martyniak, Małgorzata Flaszka, The structure of multivariable cultivar variation of Poa pratensis L. , Bulletin of Plant Breeding and Acclimatization Institute: No. 254 (2009): Regular issue
- Dariusz R. Mańkowski, Zbigniew Laudański, Biological progress in breeding, seed technology and production of potato in Poland. Part IV. Assessment of cultivar quality progress in respect of resistance to pathogens , Bulletin of Plant Breeding and Acclimatization Institute: No. 254 (2009): Regular issue
- Dariusz R. Mańkowski, Zbigniew Laudański, Biological progress in breeding, seed technology and production of potato in Poland. Part VI. Assessment of biological progress on the basis of experiments and survey data , Bulletin of Plant Breeding and Acclimatization Institute: No. 254 (2009): Regular issue