The use of molecular markers for introduction of leaf rust (Puccinia recondita f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) resistance genes in winter wheat (Triticum aestivum)

Aleksandra Pietrusińska

a.pietrusinska@ihar.edu.pl
Pracownia Genetyki Stosowanej, Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików (Poland)

Abstract

The aim of the presented research was to use genetic markers in process of introduction of effective resistance genes to the wheat. A leaf rust resistance gene Lr41 derived from Triticum tauschii (syn. Aegilops squarrosa) and powdery mildew resistance gene Pm21 derived from Dasypyrum villosum (syn. Haynaldia villosa) were introgressed into the best German variety. Line WGRC10 was used as the resistance source of Lr41 for leaf rust, whereas the 6VS/6AL translocation line Yangmai 5 was used as the resistance source of Pm21 for powdery mildew. In foreground selection several molecular markers for Lr41 and Pm21 were applied. For the detection of gene Lr41 in breeding materials with leaf rust resistance five SSR markers: Gdm35, Barc124, Gwm261, Gwm296 and Gwm210 were used. To detect the Pm21 gene three molecular markers: SCAR1250, SCAR1400 and NAU/xibao were development. After the first backcrosses background selection was conducted using the AFLP markers. For the greenhouse screening of the second and the third generations of plants for leaf rust and powdery mildew resistance, plants of selected lines were inoculated at the three-leaf stage with natural pathogen populations of B. graminis and P. recondita. The marker-assisted selection and pathology test allowed to obtain homozygous lines carrying the genes resistance to leaf rust and powdery mildew of winter wheat.

 

Supporting Agencies

The work was partly financed by the 6th EU BioExploit Framework Program and the promoter grant No. NN310 147035

Keywords:

Blumeria graminis, Puccinia recondita, Lr41, Pm21, pyramiding breeding

Bennett F. G. A. 1984. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmers. Plant. Pathol. 33: 279 — 300.
Google Scholar

Cao A. Z., Wang X. E., Chen Y.P., Zou X.W., Chen P. D. 2006. A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breed. 125: 201 — 205.
Google Scholar

Chełkowski J., Koczyka G. 2005 a. Genomika i bioinformatyka roślin. Rozprawy i Monografie. IGR PAN, Poznań, str. 139 — 157.
Google Scholar

Chełkowski J., Stępień Ł., Strzembicka A. 2005 b. Ocena podatności pszenicy ozimej na rdzę brunatną oraz poszukiwanie źródeł odporności. Acta Agrobotanica 58 (1): 143 — 152.
Google Scholar

Chen S., Xu C. G., Lin X. H., Zhang Q. 2001. Improving bacterial blight resistance of `6078', an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breed. 120: 133 — 137.
Google Scholar

Chen X. M., Luo Y. H., Xia X. C., Xia L. Q., Chen X., Ren Z. L., He Z. H., Jia J. Z. 2005. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed. 124: 225 — 228.
Google Scholar

Czembor H. J. 2008. Odporność na mączniaka prawdziwego (Blumeria graminis f. sp. hordei) odmian jęczmienia włączonych do badań rejestrowych w Polsce w latach 2004-2006. Biul. IHAR 248: 33 — 42.
Google Scholar

Flor H. H. 1955. Host-parasite interaction in flax rust its genetics and other implications. Phytopathology 45: 680 — 685.
Google Scholar

Górny, A.G. 2004. Zarys Genetyki Zbóż. Tom 1. Jęczmień, pszenica i żyto. Wyd. Instytut Genetyki Roślin PAN, Poznań, str.: 181 — 327.
Google Scholar

Higgins C. M., Hall R. M., Campbell P. R., Dietzgen R.G. 2000. PCR rescue and analysis of transgene sequences directly from crude extracts of transgenic embryos and plants. Plant Molecular Biology Reporter 18: 285a — 285g.
Google Scholar

Hospital F., Chevalet C., Mulsant P. 1992. Using markers in gene introgression breeding programs. Genetics 132: 1199 — 1210.
Google Scholar

http://ses.library.usyd.edu.au/bitstream.
Google Scholar

Huang X. Q., Röder M. S. 2004. Molecular mapping of powdery mildew resistance genes in wheat. Euphytica 137: 203 — 223.
Google Scholar

Kopahnke D., Nachtigall M., Ordon F., Steffenson B. J. 2004. Evaluation and mapping of a leaf rust resistance gene derived from Hordeum vulgare subsp. spontaneous. Czech J. Genet. Plant Breed. 40(3): 86 — 90.
Google Scholar

Kowalczyk K., Hsam S. L. K, Zeller F. J. 1998. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.). XI. Cultivars grown in Poland. J. Appl. Genet. 39 (3): 225 — 236.
Google Scholar

Liu J., Liu D., Tao W., Li W., Wang S., Chen P., Cheng S., Gao D. 2000. Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed. 119: 21 — 24.
Google Scholar

Liu, Z., Sun, Q., Ni, Z., Yang, T. 1999. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed. 118: 215 — 219.
Google Scholar

McIntosh R. A., Hart G. E., Devos K. M., Gale M. D., Rogers W. J. 1998. Catalogue of gene symbols for wheat. In: Slinkard A. E. (ed.). Proc. 9th Int. Wheat Genet Symp. 5: 13 — 72. Univ. Extension Press. University of Saskatchewan Saskatoon.
Google Scholar

McIntosh R. A., Wellings C. R., Park R. F. 1995. Wheat Rust: an atlas of resistance genes. CSIRO, Australia, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Google Scholar

Mesterházy Á., Bartoš P., Goyeau H. 2000. European virulence survey for leaf rust in wheat. Agronomie 20: 793 — 804.
Google Scholar

Perugini L. D., Murphy J. P., Marshall D., Brown-Guedira G. 2008. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor. Appl. Genet. 116: 417 — 425.
Google Scholar

Pestsova, E., Ganal, M.W., Röder, M.S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43: 689 — 697.
Google Scholar

Ribaut, J.M., Hoisington, D. 1998. Marker-assisted selection: new tools and strategies. Trends in Plant Science 3(6): 236 — 239.
Google Scholar

Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy, P., Ganal M.W. 1998. A microsatellite map of wheat. Genetics 149: 2007 — 2023.
Google Scholar

Servin B., Hospital F. 2002. Optimal positioning of markers to control genetic background in Marker Assisted Backcrossing. The Journal of Heredity 93(3): 214 — 217.
Google Scholar

Shamanin V., Morgounov A. 2009. Spring wheat breeding in western Siberia for resistance to leaf and stem rust. 12th International Cereal Rust and Powdery Mildews Conference, October 13–16, Antalya — Turkey. Abstract Book, str. 82.
Google Scholar

Singh S., Franks C. D., Huang L., Brown-Guedira G. L., Marshall D. S., Gill B. S. 2004. Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor. Appl. Genet. 108: 586 — 591.
Google Scholar

Somers D. J., Isaac P., Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109: 1105 — 1114.
Google Scholar

Song Q.J., Shi J.R., Singh S., Fickus E.W., Costa J. M., Lewis J., Gill B.S., Ward R., Cregan P. B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 110: 550 — 560.
Google Scholar

Sun, X., Bai, G., Carver, B.F. 2009. Molecular markers for wheat leaf rust resistance gene Lr41. Mol Breeding 23: 311 — 321.
Google Scholar

Tanskley S. D., Young, N. D., Paterson A. H., Bonierbaale M. W. 1989. RFLP mapping in plant breeding: new tools and old science. Biotechnology 7: 257 — 264.
Google Scholar

Tyrka, M., Chełkowski, J. 2003. Enhancing the resistance of triticale by using genes from wheat and rye. J. Appl. Genet. 45(3): 283 — 295.
Google Scholar

Vos P., Hogers R., Bleeker M., Reijans M., Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23(21): 4407 — 4414.
Google Scholar

Woźniak-Strzembicka, A. 2003. Wirulencja populacji Puccinia recondita f. sp. tritici w Polsce w latach 1998–2001. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 230: 109 — 117.
Google Scholar

www.pin.org.pl.
Google Scholar

Xue, F., Duan, X., Zhai, W., Zhou, Y., Ji, W. 2009. Microsatellite mapping of the powdery mildew resistance gene in two Chinese landraces of wheat (Triticum aestivum L. em. Thell) Mazhamai and Xiaobaidong. 12th International Cereal Rust and Powdery Mildews Conference, October 13-16, Antalya — Turcja. Abstract Book.
Google Scholar

Yildirim A., Sakin M., Karadag Y., Gokmen S., Kandemir N., Akkaya M. S., Yildirim F. 2004. Genetic marker mediated transfer of an alien gene, Pm21, into wheat conferring resistance to powdery mildew. Biotechnol. & Biotechnol. Eq. 18(2): 15 — 19.
Google Scholar


Published
2010-06-30

Cited by

Pietrusińska, A. (2010) “The use of molecular markers for introduction of leaf rust (Puccinia recondita f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) resistance genes in winter wheat (Triticum aestivum)”, Bulletin of Plant Breeding and Acclimatization Institute, (256), pp. 31–54. doi: 10.37317/biul-2010-0030.

Authors

Aleksandra Pietrusińska 
a.pietrusinska@ihar.edu.pl
Pracownia Genetyki Stosowanej, Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Poland

Statistics

Abstract views: 73
PDF downloads: 59


License

Copyright (c) 2010 Aleksandra Pietrusińska

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 > >>