Multivariate analysis of the variability of traits determining technological quality of grains in strains and varieties of winter wheat assessed in pre-registration trials

Tadeusz Śmiałowski

zhsmialo@cyf-kr.edu.pl
Zakład Roślin Zbożowych w Krakowie, Instytut Hodowli i Aklimatyzacji Roślin (Poland)

Maria Stachowicz


Zakład Roślin Zbożowych w Krakowie, Instytut Hodowli i Aklimatyzacji Roślin (Poland)

Abstract

The aim of the work was to distinguish from among 13 traits of grain technological quality one trait or a group of traits exhibiting high discriminatory power to evaluate 102 winter wheat experimental objects, followed by grouping the objects characterized by similar technological quality. Two multivariate methods: factor analysis and cluster analysis were applied. The factor analysis showed that three traits: sedimentation value, falling number and protein content explained altogether 71% of the variability of technological quality coefficients. The cluster analysis allowed to separate four clusters of experimental objects. Group 1 included 47 winter wheat forms showing a great similarity in six qualitative traits, indicating a strong selective pressure towards the qualitative breeding.


Keywords:

cluster analysis, multivariate analysis, technological traits, winter wheat

Akkaya M. S., Buyukunal-Bal E. B. 2004. Assessment of genetic variation of bread wheat varieties using microsatellite markers. Euphytica 135: 179–185.
Google Scholar

Almanza-Pinzon M. I., Khairallah M., Fox P.N., Warburton M. L. 2003. Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130: 77 — 86.
Google Scholar

Anderberg M. R. 1973. Cluster Analysis for Applications. New York: Academic Press, Inc.
Google Scholar

Anderson R., Hamalainen M., Aman P. 1994. Predictive modeling of bread–making performance and dough properties of Wheat. J. Cereals Sci. 20: 129 — 138.
Google Scholar

Badea A., Eudes F., Graf R. J., Laroche A. , Gaudet D. A., Sadasivaiah R. S. (2008). Phenotypic and marker-assisted evaluation of spring and winter wheat germplasm for resistance to fusarium head blight. Euphytica 164: 803 — 819
Google Scholar

Banaszak Z. Majchrzycki D. 2006. Pszenica jakościowa- od hodowcy do młynarza. Przegląd Zbożowo- Młynarski: 17 — 19.
Google Scholar

Bichoński A. 1995. Ocena wybranych cech technologicznych z kolekcji pszenicy ozimej. Biul. IHAR. 194. 131 — 138.
Google Scholar

Blashfield R. K., Aldenderfer M. S. 1978. The Literature on Cluster Analysis. Multivariate Behavioral Research. 13: 271 — 295.
Google Scholar

Branlard G., Dardevet, M. Saccomano R., Lagoutte F., Gourdon J. 2001. Genetic diversity of wheat storage proteins and bread wheat quality Euphytica 119: 59 — 67.
Google Scholar

Caliński T., Harabasz J. 1974. A dendrite method for cluster analysis. Comm. Stat. 3: 1 — 27.
Google Scholar

Ceglińska A., Cacak Pietrzak. G., Haber T. 2003. Współzależność pomiędzy cechami jakościowymi rodów pszenicy ozimej. Biul. IHAR 230: 65 — 70.
Google Scholar

Corbellini M., Perenzin M., Accerbi M., Vaccino P., Borghi B. 2002. Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica 123: 273 — 285.
Google Scholar

Crossa J., Franco J. 2004. Statistical method for classifying genotypes. Euphytica 137: 19 — 37.
Google Scholar

Cygankiewicz A. 1997. Wartość technologiczna ziarna materiałów hodowlanych pszenicy ozimej i jarej na tle badań własnych i światowych. Biul. IHAR 204: 219 — 238.
Google Scholar

Everitt B. S. 1984. An Introduction to Latent Variable Methods. London: Chapman & Hall.
Google Scholar

Fufa H., Baenziger P.S. , Beecher B.S., Dweikat I., Graybosch R.A., Eskridge K. M. 2005. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars Euphytica 145: 133 — 146.
Google Scholar

Graybosch R., Paterson C. J., Moore K. J., Steams M., Grant D. J. 1993. Comparative effects of wheat flour protein, lipid and pentosan composition in relation to baking and milling quality. Cereal Chem. 70: 95 — 101.
Google Scholar

Gregorczyk A., Smagacz J., Hury G., Ułasik S. 2008. Zastosowanie metod wielowymiarowych do oceny współzależności cech użytkowych ziarna i mąki wybranych odmian pszenicy ozimej. Coll. Biom. 38: 23 — 31.
Google Scholar

Harman, H. H. 1976. Modern Factor Analysis, Third Edition, Chicago: University of Chicago Press.
Google Scholar

Kolliker R., Boller B., Widmer F. 2005. Marker assisted poliycross breeding to increase diversity and yield in perennial ryegrass (Lolium perenne L.) Euphytica 146: 55 — 65.
Google Scholar

Jackson, J. E. 1980. Principal Components and Factor Analysis: Part I – Principal. Components, Journal of Quality Technology, 12, 201 — 213.
Google Scholar

Johansson E. 2002. Effect of two wheat genotypes and Swedish environment on falling number, amylase activities, and protein concentration and composition. Euphytica 126: 143 — 149.
Google Scholar

Lawley, D. N. and Maxwell, A.E. 1971. Factor Analysis as a Statistical Method. New York: American Elsevier Publishing Company.
Google Scholar

Liu J., Liu L., Hou N., Zhang A., Liu C. 2007. Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits. Euphytica 155: 249 — 258.
Google Scholar

Liu J., He Z., Zhao Z, Pena R., Rajaram S. 2003. Wheat quality traits and quality parameters of cooked dry white Chinese Noodles. Euphytica 131: 147 — 154.
Google Scholar

Mądry W. 1997. Studia statystyczne nad wielowymiarową oceną zróżnicowania cech ilości w kolekcjach zasobów genowych zbóż. Wydawnictwo SGGW: Rozprawy Naukowe i Monografie, Warszawa.
Google Scholar

Pecina M., Gunjaca J. 2000. Multivariate distance and classification of witer wheat breeding program. 22 Int. Conf. Information Technology Interphaces ITI 2000. Pula, Croatia: 232 — 328.
Google Scholar

Santos T. M., Gananca F., Slaski J., Miguel A., Pinheiro de Carvalho A. 2009. Morphological characterization of wheat genetic resources from the Island of Madeira, Portugal. Genet Resour Crop. Vol. 56: 363–375.
Google Scholar

SAS Institute Inc. 2004. SAS/STAT 9.1 users guide. Cary, NC, USA: SAS Publishing. SAS Institute Inc.
Google Scholar

Sarle W. S. 1983, The Cubic Clustering Criterion. SAS Technical Report A-108, Cary, NC: SAS Institute Inc.
Google Scholar

Spath H. 1980. Cluster Analysis Algorithms, Chichester, England: Ellis Horwood.
Google Scholar

Sieczko L. 2003. Kryterium wstępnego przecięcia dendrogramu w hierarchicznej analizie skupień. Coll. Biom. 23: 249 — 258.
Google Scholar

Sieczko L., Mądry W., Zieliński A. 2006. Zastosowanie analizy składowych w badaniach nad wielocechową charakterystyką zmienności genetycznej w kolekcjach zasobów genowych pszenicy twardej (Triticum durum L.) Coll. Biom. 34. 223 — 239.
Google Scholar

Sorrels M.E. 2007. Application of new knowledge, technologies, and strategies to wheat improvement. Euphytica 157: 299 — 306.
Google Scholar

Śmiałowski T. 2004. Ocena rodów pszenicy ozimej z polskiej hodowli w doświadczeniach przed rejestrowych w roku 2004. Biul. IHAR 235: 13 — 22.
Google Scholar

Śmiałowski T., Stachowicz M. 2007. Ocena wartości technologicznej nowych polskich rodów i odmian pszenicy ozimej z doświadczeń wstępnych w latach 2005–2006. Biul. IHAR: 57 — 66.
Google Scholar

Śmiałowski T., Stachowicz M. 2008. Wykorzystanie analizy ścieżek do oceny współzależności pomiędzy cechami technologicznymi pszenicy ozimej. Coll. Biom. 38: 79 — 87.
Google Scholar

Ward J. H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236 — 244.
Google Scholar

Wolfe, J. H. 1970. Pattern Cluster by Multivariate Mixture Analysis. Multivariate Behavioral Research 5: 329 — 350.
Google Scholar

Wikstrom K., Bohlin L. 1996. Multivariate analysis as a tool to predict bread volume from mixograph parameters. Cereal Chem. 73 (6): 686 — 690.
Google Scholar

Zhang Y., Zhang Y., He Z., Ye G. 2005. Milling quality and protein properties of autumn-sown Chinese wheat evaluated through multi-location trials. Euphytica 143: 209 — 222.
Google Scholar


Published
2009-09-30

Cited by

Śmiałowski, T. and Stachowicz, M. (2009) “Multivariate analysis of the variability of traits determining technological quality of grains in strains and varieties of winter wheat assessed in pre-registration trials”, Bulletin of Plant Breeding and Acclimatization Institute, (253), pp. 47–58. doi: 10.37317/biul-2009-0021.

Authors

Tadeusz Śmiałowski 
zhsmialo@cyf-kr.edu.pl
Zakład Roślin Zbożowych w Krakowie, Instytut Hodowli i Aklimatyzacji Roślin Poland

Authors

Maria Stachowicz 

Zakład Roślin Zbożowych w Krakowie, Instytut Hodowli i Aklimatyzacji Roślin Poland

Statistics

Abstract views: 58
PDF downloads: 16


License

Copyright (c) 2009 Tadeusz Śmiałowski, Maria Stachowicz

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 3 > >>