Application of RAPD and ISSR methods to genetic similarity estimation of Greek Dasypyrum villosum (L.) P. Candargy populations

Agnieszka Grądzielewska

genetyka.roslin@up.lublin.pl
Instytut Genetyki, Hodowli i Biotechnologii Roślin, Uniwersytet Przyrodniczy w Lublinie (Poland)

Edyta Paczos-Grzęda


Instytut Genetyki, Hodowli i Biotechnologii Roślin, Uniwersytet Przyrodniczy w Lublinie (Poland)

Daniela Gruszecka


Instytut Genetyki, Hodowli i Biotechnologii Roślin, Uniwersytet Przyrodniczy w Lublinie (Poland)

Abstract

Estimation of genetic similarity between nine Greek Dasypyrum villosum L. (P.) Candargy populations native to three Greece regions (Thesally, West and Central Macedonia) was performed basing on polymorphism of RAPD and ISSR markers. Eighteen RAPD and seventeen ISSR selected primers were used in the genetic similarity analyses. In total, 122 RAPD and 210 ISSR products were obtained, out of which 50% were polymorphic. The RAPD method identified specific products only in five from nine populations studied, while ISSR in seven, most for W6 7264. Polymorphic information content (PIC) values calculated for the both methods, ranged from 0.13–0.68 for RAPD and 0.15–0.52 for ISSR. Mean values of PIC for RAPD and ISSR were 0.32 and 0.33, respectively. Based on the polymorphism of RAPD and ISSR markers and both methods combined, genetic similarities using Dice algorithm were estimated between pairs of populations analyzed. Mean genetic similarities were 0.854, 0.871 and 0.864, respectively. Most different from the others was W6 7264. Based on Dice matrix similarities, dendrograms showing relatedness between the analyzed populations were constructed.


Keywords:

Dasypyrum, ISSR, RAPD, genetic similarity, molecular markers

Bednarek P. T., Chwedorzewska K. 2001. Markery molekularne i ich charakterystyka genetyczna oraz wybrane zastosowania w analizie genetycznej roślin. Biotechnologia 1 (52): 9 — 34.
Google Scholar

Bolibok H., Rakoczy-Trojanowska M., Hromada A., Pietrzykowski R. 2005. Efficiency of different PCR-based marker systems in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica 146: 109 — 116.
Google Scholar

Caceres M.E., De Pace C., Scarascia Mugnozza G.T., Kotsonis P., Ceccarelli M., Cionini P.G. 1998. Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction. Theor. Appl. Genet. 96: 559 — 567.
Google Scholar

Castagana R., Gnocchi S., Perenzin M., Heun M. 1997. Genetic variability of the wild diploid wheat Triticum urartu revealed by RFLP and RAPD markers. Theor. Appl. Genet. 94: 424 — 430.
Google Scholar

Chen Q., Conner R. L., Li H., Laroche A., Graf R.J., Kuzyk A. D. 2002. Expression of resistance to stripe rust, powdery mildew and the wheat curl mite in Triticum aestivum-Haynaldia villosa lines. Can. J. Plant. Sci. 82 (2): 451 — 456.
Google Scholar

De Pace C., Snidaro D., Ciaffi M., Vittori D., Ciofo A., Cenci A., Tanzarella O.A., Qualset C.O., Scarascia Mugnozza G.T. 2001. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica 117: 67 — 75.
Google Scholar

Fahima T., Sun G. L., Beharav A., Krugman T., Beiles A., Nevo E. 1999. RAPD polymorphism of wheat emmer populations, Triticum dicoccoides, in Israel. Theor. Appl. Genet 98: 434 — 447.
Google Scholar

Fernández M. E., Figueiras A. M., Benito C. 2002. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet. 104: 845 — 851.
Google Scholar

Grądzielewska A. 2006. The genus Dasypyrum — part 2. Dasypyrum villosum — a wild species used in wheat improvement. Euphytica 152: 441 — 454.
Google Scholar

Gruszecka D., Miąc A. 2002. Wykorzystanie metod RAPD w określaniu mieszańcowego charakteru rodów Secale cereale L. × Dasypyrum villosum (L.) P. Candargy. Zeszyty Problemowe Postepów Nauk Rolniczych 488: 161 — 168.
Google Scholar

Matos M., Pinto-Carnide O., Benito C. 2001. Phylogenetic relationship among Portuguese rye based on isozyme, RAPD and ISSR markers. Hereditas 134: 229 — 236.
Google Scholar

Milligan B. G. 1992. Plant DNA isolation. In: Molecular analysis of populations: a practical approach. IRL Press, Oxford, UK, 59 — 88.
Google Scholar

Nagaoka T., Ogihara Y. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94: 597 — 602.
Google Scholar

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl. Acad. Sci. U. S. A. 70, 3321 — 3323.
Google Scholar

Nei M., Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269 — 5273.
Google Scholar

Patzak J. 2001. Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica 121: 9 — 18.
Google Scholar

Qi L., Cao M., Chen P., Li W., Liu D. 1996. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39: 191 — 197.
Google Scholar

Qian W., Ge S., Hong D.Y. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102: 440 — 449.
Google Scholar

Rohlf F.J. 2001. NTSYS-pc numerical taxonomy and multivariate analysis system. Version 5.1. Exeter Publishing Ltd., Setauket, N.Y.
Google Scholar

Sarla N., Neeraja C. N., Siddiq E. A. 2005. Use of anchored (AG)n and (GA)n primers to asses genetic diversity of Indian landraces and varieties of rice. Curr. Sci. 89(8): 1371 — 1381.
Google Scholar

Sztuba-Solińska J. 2005. Systemy markerów molekularnych i ich zastosowanie w hodowli roślin. Kosmos 54 (2–3): 227 — 239.
Google Scholar

Tanyolac B. 2003. Inter-simple sequence repeat (ISSR) and RAPD variation among wild barley (Hordeum vulgare subsp. spontaneum) populations from west Turkey. Genetic Resources and Crop Evolution 50: 611 — 614.
Google Scholar

Williams J. G. K., Kubelik A. R., Livak K J., Rafalski J. A., Tingey S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acid. Res. 18: 6531 — 6535.
Google Scholar

Xia G., Li Z., Wang S., Xiang F., Liu J., Chen P., Liu D. 1998. Asymmetric somatic hybridization between haploid common wheat and UV-irradiated Haynaldia villosa. Plant Sci. 137: 217 — 223.
Google Scholar

Yang Z. J., Liu C., Feng J., Li G. R., Zhou J.P., Deng K. J., Ren Z. L. 2006. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas 143: 47 — 54.
Google Scholar

Yildirim A., Jones S. S., Murray T. D., Line R. F. 2000. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Diseases 84: 40 — 44.
Google Scholar

Zhang Q., Li Q., Wang X., Wang H., Lang S., Wang Y., Wang S., Chen P., Liu D. 2005. Development and characterization of a Tricticum aestivum – Haynaldia villosa translocation line T4VS-4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145: 317 — 320.
Google Scholar

Zhong G. Y., Qualset C. O. 1993. Allelic diversity of high-molecular-weight glutenin protein subunits in natural populations of Dasypyrum villosum (L.) Candargy. Theor. Appl. Genet. 86: 851 — 858.
Google Scholar

Zhong G. Y., Qualset C.O. 1995. Quantitative genetic diversity and conservation strategies for an allogamous annual species, Dasypyrum villosum. (L.) Candargy (Poaceae). Theor. Appl. Genet. 91: 1064 — 1073.
Google Scholar

Zhu Z., Tihua F., Yuan T., Ye Ch., Zhenglong R. 2007. Identification and chromosomal locations of novel genes for resistance to powdery mildew and stripe rust in wheat line 101-3. Euphytica 156: 89 — 94.
Google Scholar

Ziętkiewicz E., Rafalski A., Labuda D. 1994. Genome fingerprinting by simple-sequence repeat (SSR) – anchored chain reaction amplification. Genomics 20: 176 — 183.
Google Scholar


Published
2009-09-30

Cited by

Grądzielewska, A., Paczos-Grzęda, E. and Gruszecka, D. (2009) “Application of RAPD and ISSR methods to genetic similarity estimation of Greek Dasypyrum villosum (L.) P. Candargy populations”, Bulletin of Plant Breeding and Acclimatization Institute, (253), pp. 297–307. doi: 10.37317/biul-2009-0045.

Authors

Agnieszka Grądzielewska 
genetyka.roslin@up.lublin.pl
Instytut Genetyki, Hodowli i Biotechnologii Roślin, Uniwersytet Przyrodniczy w Lublinie Poland

Authors

Edyta Paczos-Grzęda 

Instytut Genetyki, Hodowli i Biotechnologii Roślin, Uniwersytet Przyrodniczy w Lublinie Poland

Authors

Daniela Gruszecka 

Instytut Genetyki, Hodowli i Biotechnologii Roślin, Uniwersytet Przyrodniczy w Lublinie Poland

Statistics

Abstract views: 23
PDF downloads: 21


License

Copyright (c) 2009 Agnieszka Grądzielewska, Edyta Paczos-Grzęda, Daniela Gruszecka

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)