The impact of leaf rust on wheat crops in the context of climate change

Aleksandra Pietrusińska-Radzio

a.pietrusinska@ihar.edu.pl
Instytut Hodowli I Aklimatyzacji Roślin – Państwowy Instytut Badawczy (Poland)
https://orcid.org/0000-0001-6089-7030

Monika Żurek


Instytut Hodowli I Aklimatyzacji Roślin – Państwowy Instytut Badawczy (Poland)
https://orcid.org/0000-0002-4597-7734

Abstract

In the era of changing climate, brown rust poses one of the most serious threats to wheat crops worldwide. Wheat, being one of the key grains for global food security, is particularly vulnerable to yield losses caused by this disease. Climate changes, characterized by rising temperatures, variable rainfall, and extreme weather conditions, have a significant impact on the development and spread of brown rust. Rising average temperatures favor changes in the pathogen's life cycle, while rainfall can create conditions more conducive to infections. As a result, farmers must face not only an increased frequency of the disease but also its potentially greater aggressiveness.

This publication aims to illustrate how changing climatic conditions affect brown rust and what management strategies can be effective in minimizing losses in wheat crops. We will also present current research and technologies aimed at mitigating the adverse effects of global warming and discuss the prospects for agriculture in the context of global climate change.


Keywords:

climate change, gene resources, leaf rust, mathematical modeling, Puccinia recondita

Börner, A., Freytag, U., Sperling, U., 2006. Analysis of wheat disease resistance data originating from screenings of Gatersleben Genebank accessions during 1933 and 1992. Genet. Resour.Crop Evol. 53, 453–465. https://doi.org/10.1007/s10722-004-1158-8 DOI: https://doi.org/10.1007/s10722-004-1158-8
Google Scholar

Caubel, J., Launay, M., Lannou, C., Brisson, N., 2012. Generic response functions to simulate climate-based processes in models for the development of airborne fungal crop pathogens. Ecol. Modell. 242, 92–104. https://doi.org/10.1016/j.ecolmodel.2012.05.012 DOI: https://doi.org/10.1016/j.ecolmodel.2012.05.012
Google Scholar

Caubel, J., Launay, M., Ripoche, D., Gouache, D., Buis, S., Huard, F., Huber, L., Brun, F., Bancal, M.O., 2017. Climate change effects on leaf rust of wheat: Implementing a coupled crop-disease model in a French regional application. Eur. J. Agron. 90, 53–66. https://doi.org/10.1016/j.eja.2017.07.004 DOI: https://doi.org/10.1016/j.eja.2017.07.004
Google Scholar

Chaloner, T.M., Gurr, S.J., Bebber, D.P., 2021. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Chang. 11, 710–715. https://doi.org/10.1038/s41558-021-01104-8 DOI: https://doi.org/10.1038/s41558-021-01104-8
Google Scholar

Gouache, D., Le, Bris, D., Bogard, M., Deudon, O., Page, C., Gate, P., 2012. Evaluating agronomic adaptation options to increasing heat stress under climate change during wheat grain filling in France. Eur. J. Agron. 39, 62–70. https://doi.org/10.1016/j.eja.2012.01.009 DOI: https://doi.org/10.1016/j.eja.2012.01.009
Google Scholar

Hajjar, R., Hodgkin, T., 2007. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156, 1–13. https://doi.org/10.1007/s10681-007-9363-0 DOI: https://doi.org/10.1007/s10681-007-9363-0
Google Scholar

Hu, G., Rijkenberg, F.H., 1998. Subcellular localization of beta-1,3-glucanase in Puccinia recondita f sp tritici-infected wheat leaves. Planta 204, 324–334. DOI: https://doi.org/10.1007/s004250050263
Google Scholar

Jarvis, A., Lane, A., Hijmans R., 2008. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 126, 13–23. https://doi.org/10.1016/j.agee.2008.01.013 DOI: https://doi.org/10.1016/j.agee.2008.01.013
Google Scholar

Jevtić, R., Župunski, V., Lalošević, M., Jacković B., Orbović B., Ilin S., 2020. Diversity in susceptibility reactions of winter wheat genotypes to obligate pathogens under fluctuating climatic conditions. Sci Rep 10, 19608. https://doi.org/10.1038/s41598-020-76693-z DOI: https://doi.org/10.1038/s41598-020-76693-z
Google Scholar

Juroszek, P., Tiedemann, A., 2013. Climate change and potential future risks through wheat diseases: A review. Eur. J. Plant Pathol. 136, 21–33. https://doi.org/10.1007/s10658-012-0144-9 DOI: https://doi.org/10.1007/s10658-012-0144-9
Google Scholar

Kocmánková, E., Trnká, M., Juroch, J., Dubrovský, M., Semerádová, D., Možný, M., Žalud, Z., 2009. Impact of climate change on the occurrence and activity of harmful organisms. Plant Prot. Sci. 45, 48–52. DOI: https://doi.org/10.17221/2835-PPS
Google Scholar

Kolmer, J., 2013. Leaf rust of wheat: pathogen biology, variation and host resistance. Forests 4, 70–84. https://doi.org/10.3390/f4010070 DOI: https://doi.org/10.3390/f4010070
Google Scholar

Leisner, C.P., Potnis, N., Sanz-Saez, A., 2023. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. Plant Cell Environ. 46(10): 2946–2963. https://doi: 10.1111/pce.14532 DOI: https://doi.org/10.1111/pce.14532
Google Scholar

Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol. 55: 591-628. https://doi: 10.1146/annurev.arplant.55.031903.141610 DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141610
Google Scholar

Miedaner, T., Juroszek, P., 2021. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor. Appl. Genet. 134, 1771–1785. https://doi.org/10.1007/s00122-021-03807-0 DOI: https://doi.org/10.1007/s00122-021-03807-0
Google Scholar

Morgounov, A., Tufan, H.A., Sharma, R., Akin, B., Bagci, A., Braun, H.J., Kaya, Y., Keser, M., Payne, T.S., Sonder, K., McIntosch R., 2012. Global incidience of wheat rust and powdery mildew durning 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur. J. Plant Pathol. 132, 323–340. https://doi.org/10.1007/s10658-011-9879-y DOI: https://doi.org/10.1007/s10658-011-9879-y
Google Scholar

Navarro, J.C., Centeno, M.A., Laguna, O.H., Odriozola, J.A., 2020. Ru–Ni/MgAl2O4 structured catalyst for CO2 methanation. Renewable Energy, 161: 120–132. https://doi.org/10.1016/j.renene.2020.07.055 DOI: https://doi.org/10.1016/j.renene.2020.07.055
Google Scholar

Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y., Xu, J., 2019. Impact of climate change on Crops adaptation and Strategies to tackle Its outcome: A Review. Plants (Basel) 8(2): 34. https://doi.org/10.3390/plants8020034 DOI: https://doi.org/10.3390/plants8020034
Google Scholar

Rodríguez-Moreno, V.M., Jiménez-Lagunes, A., Estrada-Avalos, J., Mauricio-Ruvalcaba, J.E., Padilla-Ramírez, J.S., 2020. Weather-data-based model: an approach for forecasting leaf andstripe rust on winter wheat. Meteorol Appl. 27:e1896. https://doi.org/10.1002/met.1896 DOI: https://doi.org/10.1002/met.1896
Google Scholar

Savary, S., Nelson, A., , A.H., Willocquet, L., Duveiller, E., Mahuku, G., Forbes, G., Garrett, K.A., Hodson, D., Padgham, J., Pande, S., Sharma, M., Yuen, J., , A., 2011. International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Dis. 95, 1204–1216. https://doi.org/10.1094/PDIS-04-11-0316 DOI: https://doi.org/10.1094/PDIS-04-11-0316
Google Scholar

Singh, R.P., Prasad, P.V.V., Reddy, K.R., 2015. Climate change: implications for stakeholders in genetic resources and seed sector. Adv. Agron. 129, 117–180. https://doi.org/10.1016/bs.agron.2014.09.002 DOI: https://doi.org/10.1016/bs.agron.2014.09.002
Google Scholar

Strzembicka, A, Czajowski, G, Karska, K., 2013. Characteristic of the winter wheat breeding materials in respect of resistance to leaf rust Puccinia triticina. Journal Bulletin of Plant Breeding and Acclimatization Institute 268, 7–14.
Google Scholar

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., Ferreira De Siqeira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huertas, M.A., Peterson, A.T., Phillip,s O.L., Williams, S.E., 2004. Extinction risk from climate change. Nature 427, 145–148. https://doi.org/10.1038/nature02121 DOI: https://doi.org/10.1038/nature02121
Google Scholar

Wheeler, T., Braun, J., 2013. Climate change impacts on global food security. Science 341, 508–513. https://doi.org/10.1126/science.1239402 DOI: https://doi.org/10.1126/science.1239402
Google Scholar

Wójtowicz, A, Wójtowicz, M., Ratajkiewicz, H., Pasternak ,M., 2017. Prognoza zmian czasu inkubacji sprawcy rdzy brunatnej pszenicy w reakcji na przewidywane ocieplenie klimatu. Fragm. Agron. 34(4), 197–207.
Google Scholar

Xiao, Y., Wang, M., Song, Y., 2022. Abiotic and biotic stress cascades in the era of climate change pose a challenge to genetic improvements in plants. Forests 13(5): 780. https://doi.org/10.3390/f13050780 DOI: https://doi.org/10.3390/f13050780
Google Scholar

Zhang, L., Meakin, H., Dickinson, M. 2003. Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP. Molecular Plant Pathology, 4 469–477. DOI: https://doi.org/10.1046/j.1364-3703.2003.00192.x
Google Scholar


Published
2024-08-19

Cited by

Pietrusińska-Radzio, A. and Żurek, M. (2024) “The impact of leaf rust on wheat crops in the context of climate change”, Bulletin of Plant Breeding and Acclimatization Institute, (301), pp. 63–68. doi: 10.37317/biul-2024-0007.

Authors

Aleksandra Pietrusińska-Radzio 
a.pietrusinska@ihar.edu.pl
Instytut Hodowli I Aklimatyzacji Roślin – Państwowy Instytut Badawczy Poland
https://orcid.org/0000-0001-6089-7030

Authors

Monika Żurek 

Instytut Hodowli I Aklimatyzacji Roślin – Państwowy Instytut Badawczy Poland
https://orcid.org/0000-0002-4597-7734

Statistics

Abstract views: 144
PDF downloads: 37


License

Copyright (c) 2024 Aleksandra Pietrusińska-Radzio, Monika Żurek

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 > >>