Evaluation of winterhardiness, earliness and infections with brown rust and powdery mildew in hybrids of Aegilops juvenalis and Ae. ventricosa with Triticum aestivum and T. durum
Roman Prażak
biuro.dziekana.wrib@pbs.edu.plInstytut Nauk Rolniczych w Zamościu, Akademia Rolnicza w Lublinie (Poland)
Abstract
Winterhardiness, earliness, resistance to brown rust (Puccinia recondita f. sp. triitici) and powdery mildew (Blumeria graminis f. sp. tritici) were evaluated, under field conditions, in four wide hybrid strains, together with their parental forms. The strains were derived from crosses of Aegilops juvenalis and Ae. ventricosa with Triticum aestivum (cvs. Arda, Begra, Panda, CZR 1406–1BL/1RS) and T. durum (cv. Grandur). The percentage of living plants in spring was a measure of winterhardiness. The earliness was determined by the number of days from May 1st to ear emergence. The diseases evaluation was performed at the stages of heading and milk maturity. Natural infections with brown rust and powdery mildew were evaluated using a nine-grades score (1 — most susceptible, 9 — completely resistant). From the conducted investigations it follows that in the climate conditions of eastern Poland the hybrids had a little lower winterhardiness than the CZR 1406 line and the Begra wheat cultivar, but they were more winter hardy than the Aegilops species. Among the hybrids, good winterhardiness showed the strains (Ae. juvenalis × CZR 1406) × Begra and {[(Ae. juvenalis × CZR 1406) × CZR 1406] × Panda} × CZR 1406. The earliest heading was observed in the Aegilops species, later — in the hybrid strains and the latest — in the wheat cultivars. The strains (Ae juvenalis × CZR 1406) × Begra and {[( Ae. ventricosa × Grandur) × Panda] × Arda} × Arda were highly susceptible to brown rust. The hybrids [(Ae. ventricosa × Grandur) × Panda] × Panda and {[(Ae. juvenalis × CZR 1406) × CZR 1406] × Panda} × CZR 1406 showed high resistance to brown rust. All hybrid strains showed good resistance to powdery mildew. The highest resistance to the mildew was noted in the strain {[(Ae. ventricosa × Grandur) × Panda] × Arda} × Arda.
Keywords:
Aegilops, Triticum, hybrids, winterhardiness, earliness, brown rust, powdery mildewReferences
Autrique E., Singh R. P., Tanksley S. D., Sorrells M. E. 1995. Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38 (1): 75 — 83.
DOI: https://doi.org/10.1139/g95-009
Google Scholar
Bai D., Scoles G. J., Knott D. R., 1994. Transfer of leaf rust and stem rust resistance genes from Triticum triaristatum to durum and bread wheats and their molecular cytogenetic localization. Genome 37 (3): 410 — 418.
DOI: https://doi.org/10.1139/g94-058
Google Scholar
Bonhomme A., Gale M. D., Koebner R. M. D., Nicolas P., Jahier G., Bernard M. 1995. RFLP analysis of an Aegilops ventricosa chromosome that carries a gene conferring resistance to leaf rust (Puccinia recondita) when transferred to hexaploid wheat. Theor. Appl. Genet. 90 (7/8): 1042 — 1048.
DOI: https://doi.org/10.1007/BF00222919
Google Scholar
Ceoloni C., Del Singore. G., Ercoll L., Domini P. 1992. Locating the alien chromatin segment in common wheat — Aegilops longissima mildew resistance transfers. Hereditas, 116: 239 — 245.
DOI: https://doi.org/10.1111/j.1601-5223.1992.tb00830.x
Google Scholar
Chełkowski J., Stępień A. 2002. Podatność krajowych odmian pszenicy na patogeny grzybowe i genetycznie dziedziczona odporność na powodowane przez nie choroby. Hod. Roślin Nasien. 2: 27 — 32.
Google Scholar
COBORU 1979. Instrukcja metodyczna prowadzenia doświadczeń odmianowych.
Google Scholar
Dvořák J. 1977. Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can. J. Genet. Cytol. 19: 133 — 141.
DOI: https://doi.org/10.1139/g77-016
Google Scholar
Dyck P. L., Kerber E. R. 1970. Inheritance in hexaploid wheat of adult — plant leaf rust resistance derived from Aegilops squarrosa. Can. J. Genet. Cytol. 12: 175 — 180.
DOI: https://doi.org/10.1139/g70-025
Google Scholar
Eser V. 1998. Characterization of powdery mildew resistant lines derived from crosses between Triticum aestivum and Aegilops speltoides and Ae. mutica. Euphytica 100: 269 — 272.
DOI: https://doi.org/10.1007/978-94-011-4896-2_46
Google Scholar
Frauenstein K., Hammer K. 1985. Prüfung von Aegilops — Arten auf Resistenz gegen Echten Mehltau, Erysiphe graminis D. C., Braunrost, Puccinia recondita Rob. ex Desm. und Spelzenbraune, Septoria nordum Berk. Kulturpflanze 33: 155 — 163.
DOI: https://doi.org/10.1007/BF01997268
Google Scholar
Gill B. S., Sharma H. C., Raupp W. J., Browder L. E., Hatchet J. H., Harvey T. L., Moseman J. G., Waines J. G. 1985. Evaluation of Aegilops species for resistance to wheat powder mildew, wheat leaf rust, Hessian fly and greenbug. Plant Disease 69: 314 — 316.
Google Scholar
Gut M., Witkowski E., Dyrek W., Gołębiowska-Małek H. 1993. Wpływ hartowania na mrozoodporność rodów hodowlanych pszenicy (Triticum aestivum L.). Biul. IHAR 187: 13 — 18.
Google Scholar
Harjit-Singh, Tsujimoto H., Sakhuja P. K., Singh T., Dhaliwal H. S. 2000. Transfer of resistance to wheat pathogens from Aegilops triuncialis into bread wheat. Wheat Inf. Serv. 91: 5 — 10.
Google Scholar
Jończyk K. 1999. Efektywność chemicznego zwalczania chorób grzybowych w uprawie pszenicy ozimej i żyta. Pam. Puławski 114: 151 — 158.
Google Scholar
Kimber G., Feldman M. 1987. Wild Wheat: An Introduction. College of Agriculture, University of Missouri, Columbia, Special Report 353: 1 — 146.
Google Scholar
Kiss J. M., Kiss A. 1980. Breeding methods and tests to produce early hexaploid triticale plants. Hod. Rośl. Aklim. 24 (5): 459 — 466.
Google Scholar
Kowalczyk K. 2001. Identyfikacja, charakterystyka i lokalizacja supresora locus Pm 8 w polskich odmianach pszenicy zwyczajnej (Triticum aestivum L.). Rozprawy Naukowe AR w Lublinie.
Google Scholar
Law C. N., Jenkins G. 1970. A genetic study of cold resistance in wheat. Genet. Res. 15: 1197 — 1208.
DOI: https://doi.org/10.1017/S001667230000152X
Google Scholar
Limin A. F. F., Fowler D. B. 1992. The expression of cold hardiness in Triticum species amphiploids. Can. I. Genet. Cytol. 24: 51 — 56.
DOI: https://doi.org/10.1139/g82-006
Google Scholar
Ma H., Singh R.P., Mujeeb-Kazi A. 1995. Resistance to stripe rust in Triticum turgidum, T.tauschii and their synthetic hexaploids. Euphytica 82: 117 — 124.
DOI: https://doi.org/10.1007/BF00027057
Google Scholar
Majewski T. 1979. Grzyby (Mycota). Podstawczaki, rdzawnikowe (Uredinales) II. PWN, Warszawa.
Google Scholar
Manisterski J., Segal A., Levy A. A., Feldman M. 1988. Evaluation of Israeli Aegilops and Agropyron species for resistance to wheat leaf rust. Plant Disease 72: 941 — 944.
DOI: https://doi.org/10.1094/PD-72-0941
Google Scholar
McIntosh R. A., Dyck P. L., Green G. I. 1977. Inheritance of leaf rust and stem rust resistance in wheat cultivars (Agent and Agatha). Austral. J. Anc. Res. 28: 37 — 45.
DOI: https://doi.org/10.1071/AR9770037
Google Scholar
Pasquini M. 1980. Disease resistance in wheat: Behaviour of Aegilops species with respect to Puccinia recondita f. sp. tritici, Puccinia graminis f. sp. tritici and Erysiphe graminis f. sp. tritici. Genet. Agr. 34: 133 — 148.
Google Scholar
Prażak R. 1997. Evaluation of brown rust (Puccinia recondita f. sp. tritici) infection in Aegilops species and Triticum aestivum L. cv. Gama. J. Appl. Genet. 38B: 123 — 127.
Google Scholar
Prażak R. 1998. Zimotrwałość gatunków rodzaju Aegilops i Triticum aestivum L. w warunkach klimatycznych Polski wschodniej. Zesz. Probl. Post. Nauk Rol. 463: 445 — 450.
Google Scholar
Reszel R. 1992. Środowisko przyrodnicze województwa zamojskiego. Wyd. „Emma Art”, Lublin.
Google Scholar
Rybka Z., Zagdańska B., Gut M., Witkowski E. 1994. Przydatność metod oceny mrozoodporności materiałów hodowlanych pszenicy ozimej. Biul. IHAR 192: 59 — 68.
Google Scholar
Sears E. R. 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol. 9: 1 — 22.
Google Scholar
Specov P., Iliev J. 1993. Studies on Wheat — Aegilops variabilis addition and substitution lines resistant to powdery mildew. VIII International Wheat Genetics Symposium, 20–25 July 1993, Beijing, China, Abstracts: 31.
Google Scholar
Stefanowska G., Prażak R., Strzembicka A., Masłowski J. 1995. Transfer genów z Aegilops ventricosa Tausch. i Aegilops juvenalis (Thell) Eig. do Triticum aestivum L. Biul. IHAR 194: 45 — 52.
Google Scholar
Tarkowski Cz. 1984. Genetyka, hodowla roślin i nasiennictwo. PWN, Warszawa.
Google Scholar
Tarkowski Cz. 1989. Biologia pszenżyta. PWN, Warszawa.
Google Scholar
Tarkowski Cz., Masłowski J., Gruszecka D. 1994. The influence of wheat chromosome 1BLl/1RS on toxic activity of aluminium ions. First Intern. Sem. “Cereals-Pathogen and Stress Factors Interactons”. Poznań: 80.
Google Scholar
Tyrka M., Stefanowska G., Tarkowski Cz. 2002. Identification of 1BL/1RS translocation in interspecific hybrids between Aegilops and Triticum. Plant Breed. Seed Sci. 46 (2): 37 — 43.
Google Scholar
Zaharieva M., Monneveux P., Henry M., Rivoal R., Valkoun J., Nachit M. M. 2001. Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119: 33 — 38.
DOI: https://doi.org/10.1023/A:1017500728227
Google Scholar
Zamorski C. 1995. Rozwój rdzy brunatnej oraz cechy diagnostyczne rdzy brunatnej (Puccinia recondita Rob. ex Desm) i rdzy źdźbłowej (Puccinia graminis Pers.) pszenicy. Biul. IHAR 194: 189 — 192.
Google Scholar
Zeller F. J., Hsam S. L. K. 1996. Chromosomal location of a gene suppressing powdery mildew resistance genes Pm 8 and Pm 17 in common wheat (Triticum aestivum L. em. Thell.). Theor. Appl. Genet. 93: 38 — 40.
DOI: https://doi.org/10.1007/BF00225724
Google Scholar
Zeller F. J., Lutz J., Stephan U. 1993. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) 1. Mlk and other alleles at the Pm 3 locus. Euphytica 68: 223 — 229.
DOI: https://doi.org/10.1007/BF00029876
Google Scholar
Authors
Roman Prażakbiuro.dziekana.wrib@pbs.edu.pl
Instytut Nauk Rolniczych w Zamościu, Akademia Rolnicza w Lublinie Poland
Statistics
Abstract views: 68PDF downloads: 22
License
Copyright (c) 2005 Roman Prażak

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Roman Prażak, Variability and interrelationship of some quantitative traits and total protein content in kernels of hybrids Aegilops juvenalis (Thell.) Eig. and Aegilops ventricosa Tausch. with tetraploid and hexaploid wheat Triticum L. cultivars , Bulletin of Plant Breeding and Acclimatization Institute: No. 244 (2007): Regular issue
- Roman Prażak, Morphological traits and fertility of hybrids of some Aegilops species with hexaploid wheat Triticum aestivum L. , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue
- Roman Prażak, Wanda Kociuba, Zbigniew Segit, Aneta Kramek, Evaluation of the tolerance to salt stress of selected genotypes of spring durum wheat (Triticum durum Desf.) , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Anna Skrzypik, Roman Prażak, Maria Chrząstek, Evaluation of seedling tolerance to aluminum in BC1 hybrids of (Avena sativa L. × Avena fatua L.) × Avena sativa L. , Bulletin of Plant Breeding and Acclimatization Institute: No. 252 (2009): Regular issue
- Roman Prażak, Variability and interrelationship of some traits in Aegilops kotschyi Boiss. × Triticum aestivum L. cv. Rusałka hybrids , Bulletin of Plant Breeding and Acclimatization Institute: No. 252 (2009): Regular issue
- Roman Prażak, Evaluation of salt stress tolerance in some interspecific hybrids of wheat (Triticum sp.) , Bulletin of Plant Breeding and Acclimatization Institute: No. 230 (2003): Regular issue








