Artificial neural networks and remote sensing in the assessment of spring wheat infection by Fusarium head blight

Wiesław Golka


Instytut Technologiczno – Przyrodniczy, Falenty, Al. Hrabska 3, 05‒090 Raszyn (Poland)

Edward Arseniuk


Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05‒870 Błonie (Poland)
https://orcid.org/0000-0002-4483-3317

Adrian Golka


Relayonit sp. z o.o., ul. Cietrzewia 23, 02‒492 Warszawa (Poland)

Tomasz Góral


Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05‒870 Błonie (Poland)
https://orcid.org/0000-0001-9130-6109

Abstract

The aim of the research was to use remote sensing and artificial neural networks in the assessment of spring wheat in terms of response to infection of ears caused by fungi of the genus Fusarium spp. The research was carried out on plants of 4 varieties of spring wheat. They were: KWS Torridon and Izera - with higher resistance, Radocha and Nawra - with lower resistance to the pathogen. Pictures of healthy and infected ears of all varieties were taken, and then processed using the Crops Vegetation Control Lab (CVC Lab.) Program. Based on the obtained images, their representations in the form of Growing Neural Gas (GNG) neural networks were created. As a result of photo analysis, 240 patterns were obtained, out of which 6 basic disease patterns were selected for each variety. Next, a comparison of samples of infected ears of a given variety with baseline disease patterns of the same wheat variety was made. As a result of comparing healthy and diseased plant patterns with pictures of healthy and infested plant plots, a diversity of numerical values was obtained that gave rise to the construction of a wheat plantation map detailing spots with diseased plants.


Keywords:

Fusarium head blight, wheat, artificial neural networks, teledetection

Alchanatis V., Ridel L., Hetzroni A., Yaroslavsky L. 2005. Weed detection in multi-spectral images of cotton fields. Computers and Electronics in Agriculture 47: 243 — 260.
Google Scholar

Arseniuk E., Góral T. 2015. Triticale Biotic Stresses – Known and Novel Foes, In Triticale, pp. 83 — 108. Ed F. Eudes. Cham: Springer International Publishing.
Google Scholar

Arseniuk E., Fried P.M., Winzeler H., Czembor H.J. 1991. Comparison of resistance of triticale, wheat and spelt to septoria nodorum blotch at the seedling and adult plant stages. Euphytica 55: 43 — 48.
Google Scholar

Boniecki P. 2005. Wykorzystanie technik neuronowych w praktyce rolniczej. Journal of Research and Applications in Agricultural Engineering, 50: 10 — 14.
Google Scholar

Clary K., 2013. A Comparison of the Self-Organizing Map and Growing Neural Gas Network in the Context of Optical Character Recognition. Department of Computer Science and Mathematics, Hendrix College, AR, USA: 3 pp.
Google Scholar

Figueroa M., Hammond-Kosack K.E. Solomon P.S. 2018. A review of wheat diseases — a field perspective. Mol. Plant Pathol. 19: 1523 — 1536.
Google Scholar

Frączek J.2005. Cyfrowa analiza obrazu w technice rolniczej, Inżynieria Rolnicza 6, 149 — 157.
Google Scholar

Góral T., Ochodzki P., Walentyn-Góral, D., Belter J., Majka M., Kwiatek M., Wiśniewska H. 2015. Odporność genotypów pszenicy ozimej na fuzariozę kłosów i akumulację toksyn fuzaryjnych w ziarnie scharakteryzowana za pomocą różnych typów odporności. Biuletyn IHAR 276: 19 — 37.
Google Scholar

Góral T., D. Walentyn-Góral 2018. Zróżnicowanie podatności odmian pszenicy ozimej i jarej na fuzariozę kłosów badanych w latach 2009–2016. Komunikat. Biuletyn IHAR 284: 3 — 11.
Google Scholar

Hovmøller M.S., Walter S., Bayles R.A., Hubbard A., Flath K., Sommerfeldt N., Leconte M., Czembor P., Rodriguez-Algaba J., Thach T., Hansen J.G., Lassen P., Justesen A.F., Ali S., de Vallavieille-Pope C. 2015. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathology 65: 402 — 411.
Google Scholar

Jin X., Jie L., Wang S., Qi H.J., Li S.W. 2018. Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight disease using a deep neural network in the wild field. Remote Sensing 10: 395.
Google Scholar

Kazmi W., Foix S., Alenyà G., Andersen H.J. 2014. Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: Analysis and comparison. ISPRS Journal of Photogrammetry and Remote Sensing 88: 128 — 146.
Google Scholar

Kurkute S.R. 2018. Drones for Smart Agriculture: A Technical Report. International Journal for Research in Applied Science and Engineering Technology, 6: 341 — 346.
Google Scholar

Łuczycka D. 2016. Rolnictwo XXI wieku – problemy i wyzwania. ISBN 978‒83‒945311‒0-2: 378
Google Scholar

Łukawski R., Golka W., 2011. Identyfikacja efektu mieszania gleby w procesie powierzchniowej uprawy z wykorzystaniem dynamicznej analizy obrazu 3D. Problemy Inżynierii Rolniczej 2: 55 — 64.
Google Scholar

Mendes C.A.T., Gattass M., Lopes H., 2014. FGNG: A fast multi-dimensional growing neural gas implementation. Neurocomputing 128: 328 — 340.
Google Scholar

Moshou D., Bravo C., Oberti R., West J.S., Ramon H., Vougioukas S., Bochtis D. 2011. Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engineering 108: 311 — 321.
Google Scholar

Niedbała G., Kurasiak-Popowska D., Kinga Stuper-Szablewska K. and Jerzy Nawracała, 2020. Application of Artificial Neural Networks to Analyze the Concentration of Ferulic Acid, Deoxynivalenol, and Nivalenol in Winter Wheat Grain. Agriculture 10: 127; doi: 10.3390/agriculture10040127.
Google Scholar

Nieróbca A., Pudełko R., Kozyra J. 2009. Zastosowanie zdalnych metod w analizie zachwaszczenia pól testowych. Progress in Plant Protection/Postępy w Ochronie Roślin, 49: 1622 — 1629.
Google Scholar

Osowski S. 2000. Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
Google Scholar

Perez A.J., Lopez F., Benlloch J.V., Christensen S. 2000. Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture 25: 197 — 212.
Google Scholar

Piotrowska E. 2003. Badania filmowe bryły glebowej odkształcanej przez wąskie narzędzie uprawowe. Inżynieria Rolnicza 11: 173 — 178.
Google Scholar

Prandini A., Sigolo S., Filippi L., Battilani P., Piva G. 2009. Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat. Food Chem Toxicol. 47: 927 — 31.
Google Scholar

Pudełko R., Kozyra J., Nieróbca A. 2008. Identification of the intensity of weeds in maize plantations based on aerial photographs. Zemdirbyste-Agriculture, 95: 130 — 134.
Google Scholar

Qiu R., Yang C., Moghimi A., Zhang M., Steffenson B. 2019. Detection of Fusarium Head Blight in Wheat Using a Deep Neural Network and Color Imaging. Remote Sensing 11: 2685.
Google Scholar

Rumelhart D., J. L. McClelland, the PDP Research Group.1986. Parallel Distributed Processing: explorations in the microstructure of cognition. MIT Press, Cambridge.
Google Scholar

Sankaran S., Mishra A., Ehsani R., Davis C. 2010. A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture 72 1 — 13.
Google Scholar

Skulska M., Skulska M., Makowski Ł. 2003. Zastosowanie sieci neuronowych. Wydawca: Państwowa Wyższa Szkoła Zawodowa w Tarnobrzegu: 8 str.
Google Scholar

Song Y., Sun H., Li M., Zhang Q. 2015. Technology Application of Smart Spray in Agriculture: A Review. Intelligent Automation and Soft Computing 21: 319 — 333.
Google Scholar

Wei Y., Blake M.B., Madey G.R. 2013. An operation-time simulation framework for UAV swarm configuration and mission planning. In: Proceedings of the International Conference on Computational Science, ICCS 2013, Barcelona, Spain, 5 — 7 June, 2013, pp. 1949 — 1958.
Google Scholar

Yuan L., Zhang J., Shi Y., Nie C., Wei L., Wang J. 2014. Damage mapping of powdery mildew in winter wheat with high-resolution satellite image. Remote Sensing, 6: 3611 — 3623.
Google Scholar

Yang L., Gao F., Shang L., Zhan J., McDonald B. A. 2013. Association between virulence and triazole tolerance in the phytopathogenic fungus Mycosphaerella graminicola. PLoS ONE 8(3): e59568. doi:10.1371/journal.pone.00595.
Google Scholar


Published
2020-06-22

Cited by

Golka, W. (2020) “Artificial neural networks and remote sensing in the assessment of spring wheat infection by Fusarium head blight”, Bulletin of Plant Breeding and Acclimatization Institute, (288), pp. 67–75. doi: 10.37317/biul-2020-0008.

Authors

Wiesław Golka 

Instytut Technologiczno – Przyrodniczy, Falenty, Al. Hrabska 3, 05‒090 Raszyn Poland

Authors

Edward Arseniuk 

Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05‒870 Błonie Poland
https://orcid.org/0000-0002-4483-3317

Authors

Adrian Golka 

Relayonit sp. z o.o., ul. Cietrzewia 23, 02‒492 Warszawa Poland

Authors

Tomasz Góral 

Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05‒870 Błonie Poland
https://orcid.org/0000-0001-9130-6109

Statistics

Abstract views: 530
PDF downloads: 360


License

Copyright (c) 2020 Wiesław Golka, Edward Arseniuk, Adrian Golka, Tomasz Góral

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 3 4 > >>