Hordeum bulbosum — as a source of effective resistance to barley leaf rust
Jerzy H. Czembor
j.h.czembor@ihar.edu.plPracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie (Poland)
Aleksandra Pietrusińska
Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie (Poland)
Urszula Piechota
Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie (Poland)
Abstract
Leaf rust caused by fungus Puccinia hordei has a great economic importance. Bulbous barley grass (Hordeum bulbosum L.), is the member of the secondary barley genepool. In the presented study, 26 recombinant lines obtained from crosses of barley cultivars of H. vulgare and H. bulbosum were tested with 8 differential isolates of leaf rust. Based on screening tests it was concluded that resistance to leaf rust was present in 22 from total 26 recombinant lines. Outstanding resistance to leaf rust was identified in 7 lines. These lines showed resistance reaction 0 for inoculation with all isolates used. However, based on resistance reaction we concluded that 9 lines may have had more than one resistance gene because they expressed different resistance reactions. For 2 lines we postulated presence of one or more resistance genes expressed as resistance reaction 2. In addition, expression of resistance reaction 2 is showing also a possibility for the presence in these lines of some level of partial resistance. Barley cultivars used as parents showed lack of resistance. It confirms that resistance loci present in tested recombinant lines originated from H. bulbosum parents. Based on results it may be concluded that leaf rust resistance identified in recombinant lines may represent new unique type of resistance. Hybrid lines with identified resistance to leaf rust originating from H. bulbosum can be used in breeding programmes to provide farmers with cultivars with highly effective resistance to this disease.
Keywords:
Hordeum bulbosum, leaf rust, Puccinia hordei, recombinant line, resistance geneReferences
Backes G., Madsen L. H., Jaiser H., Stougaard J., Herz M., Mohler V., Jahoor A. 2003. Localisation of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley Hordeum vulgare ssp. spontaneum line. Theor. Appl. Genet. 106: 353 — 362.
Google Scholar
Bonman J. M., Bockelman H. E., Jackson L. F., Steffenson B. J. 2005. Disease and insect resistance in cultivated barley accessions from the USDA National Small Grains Collection. Crop Sci. 45: 1271 — 1280.
Google Scholar
Bothmer von R., Jacobsen N., Rikke C. B., Jørgensen B., Linde-Laursen I. 1995. An ecogeographical study of the genus Hordeum. IPGRI, Rome, Italy: 1 — 129.
Google Scholar
Bothmer von R., Sato K., Komatsuda T., Yasuda S., Fischbeck G. 2003. The domestication of cultivated barley. In: Bothmer von R, Hintum van Th, Knüpffer H, Sato K. eds., Diversity in Barley Hordeum vulgare. Elsevier Science B. V., Amsterdam, The Netherlands: 9 — 27.
Google Scholar
Boyd L. A., Ridout C., O’Sullivan D. M., Leach J. E., Leung H. 2013. Plant-pathogen interactions: disease resistance in modern agriculture. Trends in Genetics 29: 233 — 240.
Google Scholar
Brooks W. S., Griffey C. A., Steffenson B. J., Vivar H. E. 2000. Genes governing resistance to Puccinia hordei in thirteen spring barley accessions. Phytopathol 90: 1131 — 1136.
Google Scholar
Brown J. K. M., Hovmøller M. S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297: 537 — 541.
Google Scholar
Czembor J. H. 2007. Powdery mildew resistance in recombinant lines originating from crosses between Hordeum vulgare and Hordeum bulbosum. Plant Breeding and Seed Science 56: 85 — 99.
Google Scholar
Czembor J. H., Bladenopoulos K. 2007. Resistance to leaf rust Puccinia hordei in Greek barley cultivars and breeding lines. Cereal Rusts and Powdery Mildews Bull., [www.crpmb.org/] 2007/0215czembor.
Google Scholar
Czembor J. H., Czembor H. J. 2001. Inheritance of resistance to powdery mildew Blumeria graminis f.sp. hordei in selections from Moroccan landraces of barley. Cereal Res. Comm. 293 — 4: 281 — 288.
Google Scholar
Czembor H. J., Czembor J. H. 2007a. Leaf rust resistance in spring barley cultivars and breeding lines. Plant Breeding and Seed Science 55: 5 — 19.
Google Scholar
Czembor H. J., Czembor J. H. 2007b. Leaf rust resistance in winter barley cultivars and breeding lines. Plant Breeding and Seed Science 56: 47 — 56.
Google Scholar
Czembor J. H., Czembor H. J. 2008. Leaf rust resistance in hybrid lines derived from crosses between Hordeum vulgare and Hordeum bulbosum. Plant Breeding and Seed Science 57: 13 — 20.
Google Scholar
Czembor J. H., Czembor H. J., Attene G., Papa R. 2007. Leaf rust resistance in selections from barley landraces collected in Sardinia. Plant Breeding and Seed Science 56: 73 — 84.
Google Scholar
Czembor P. C., Pietrusińska A., Czembor H. J. 2006. Mapping new resistance gene to Puccinia hordei Otth. in barley. In: Cereal Science and Technology for Feeding Ten Billion People: Genomics Era and Beyond. Proceedings from EUCARPIA — Cereal Section Conference, 13-17 Nov. Lleida, Spain: 54.
Google Scholar
Dean R., Van Kan J. A. L., Pretorius Z. A., Hammond-Kosack K. E., Di Pietro A., Spanu, Rudd J. J., Dickman M., Kahmann R., Ellis J., Foster G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology13: 414 — 430.
Google Scholar
Derevnina L., Singh D., Park R. F. 2015. The genetic relationship between barley leaf rust resistance genes located on chromosome 2HS. Euphytica 203: 211 — 220.
Google Scholar
Finckh M. R., Gacek E. S., Goyeau H., Lannou C., Merz U., Mundt C. C., Munk L., Nadziak J., Newton A. C., de Vallavielle-Pope C., Wolfe M. S. 2000. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20: 813 — 837.
Google Scholar
Fischbeck G. 2003. Diversification through breeding. In: Bothmer von R., Hintum van Th., Knüpffer H., Sato K. Eds, Diversity in Barley Hordeum vulgare, Elsevier Science B.V., Amsterdam, The Netherlands, pp. 29 — 52.
Google Scholar
Fetch T. Jr., Pickering R. A., Johnston P. A. 2004. Novel stem rust resistance in barley lines with introgressions of Hordeum bulbosum chromatin. 11th International Cereal Rusts and Powdery Mildews Conference: Abstracts, Norwich, England, 24–27 August 2004: A2.18.
Google Scholar
Franckowiak J. D. 2000. Coordinator’s report: Chromosome 2H 2. Barley Genetic Newsl. 30: 68 — 71.
Google Scholar
Golegaonkar P. G., Park R. F., Singh D. 2010. Genetic analysis of adult plant resistance to Puccinia hordei in barley. Plant Breeding 129: 162—166.
Google Scholar
Johnston P. A., Niks R. E., Meiyalaghan V., Blanchet E., Pickering R. 2013. Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley Hordeum vulgare L.. Theor. Appl. Genet. 126: 1613 — 1625.
Google Scholar
Johnston P. A., Meiyalaghan Y., Forbes M. E., Habekuß A., Butler R. C., Pickering R. 2015. Marker assisted separation of resistance genes Rph22 and Rym16Hb from an associated yield penalty in a barley: Hordeum bulbosum introgression line. Theor. Appl. Genet. 128:1137 — 1149.
Google Scholar
Kasha K. J., Kao K. N. 1970. High frequency haploid production in barley Hordeum vulgare L. Nature 225: 874 — 876.
Google Scholar
Levine M. N., Cherewick W. J. 1952. Studies on dwarf leaf rust of barley. U.S. Department of Agric. Tech. Bull. No. 1056, Washington, DC: 1 — 17.
Google Scholar
Luck J., Spackman M., Freeman A., Trębicki P., Griffiths W., Finlay K., Chakraborty S. 2011. Climate change and diseases of food crops. Plant Pathology 60: 113 — 121.
Google Scholar
Martinez F., Niks R. E., Rubiales D. 2001. Partial resistance to leaf rust in a collection of ancient Spanish barleys. Hereditas 135: 199 — 203.
Google Scholar
Mazaraki M., Grabowska J. 1998. Population structure of barley leaf rust Puccinia hordei Otth. in Poland. Biul. IHAR 207: 81 — 86.
Google Scholar
McDonald B.A., Linde C. 2002. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124: 163 — 180.
Google Scholar
Nevo E. 1985. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the fertile crescent. In: Shewry PR Ed, Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, Wallingford: 19 — 43.
Google Scholar
Newton A. C., Akar T., Baresel J. P., Bebeli P. J., Bettencourt E., Bladenopoulos K. V., Czembor J. H., Fasoula D. A., Katsiotis A., Koutis K., Koutsika-Sotiriou M., Kovacs G., Larssson H., Pinheiro de Carvalho M. A. A., Rubiales D., Russell J., Dos Santos T. M. M., Vaz Patto M. C. 2010. Cereal landraces for sustainable agriculture. A review Agronomy for Sustainable Development. 302: 237 — 269.
Google Scholar
Ney B., Bancal M. O., Bancal P., Bingham I. J., Foulkes J., Gouache D., Paveley N., Smith J. 2013. Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses. Eur. J. Plant Pathol. 135: 561 — 580.
Google Scholar
Nieróbca A., Horoszkiewicz-Janka J., Czembor J. H. 2003. Plant protection as an important element of cereals cultivation technology in the European Union. Pamiętnik Puławski 132: 311 — 320.
Google Scholar
Niks R. E., Walther U., Jaiser H., Martinez F., Rubiales D., Andersen O., Flath K., Gymer P., Heinrichs F., Jonsson R., Kuntze L., Rasmussen M., Richter E. 2000. Resistance against barley leaf rust Puccinia hordei in West-European spring barley germplasm. Agronomie 20: 769 — 782.
Google Scholar
Ochoa J., Parlevliet J. E. 2007. Effect of partial resistance to barley leaf rust, Puccinia hordei, on the yield of three barley cultivars. Euphytica 1533: 309 — 312.
Google Scholar
Park R. F. 2003. Pathogenic specialization and phenotype distribution of Puccinia hordei Otth. in Australia, 1992–2001. Plant Dis. 87: 311 — 1316.
Google Scholar
Park R. F., Karakousis A. 2002. Characterisation and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar Reka 1 and several Australian barleys. Plant Breed. 121: 232 — 236.
Google Scholar
Park R. F., Poulsen D., Barr A. R., Cakir M., Moody D. B., Raman H., Read B. J. 2003. Mapping genes for resistance to Puccinia hordei in barley. Australian J. Agric. Res. 54: 1323 — 1333.
Google Scholar
Pickering R. A. 1994. The chromosome stability of Hordeum vulgare L. × Hordeum bulbosum L. chromosome substitution plants grown at two temperatures. Hereditas 1211: 39 — 43.
Google Scholar
Pickering R. A. 2000. Do the wild relatives of cultivated barley have a place in barley improvement? Barley Genetics VIII. Proceedings of the 8th International Barley Genetics Symposium, Adelaide, Australia, 22–27 October, 2000 1: 223 — 230.
Google Scholar
Pickering R.A ., Devaux P. 1992. Haploid production: approaches and use in plant breeding. In: Shewry PR Ed, Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, Wallingford: 519 — 547.
Google Scholar
Pickering R. A., Johnston P. A. 2005. Recent progress in barley improvement using wild species of Hordeum. Cytogenet. Genome Res. 109: 344 — 349.
Google Scholar
Pickering R. A., Timmerman G. M., Cromey M. G., Melz G. 1994. Characterisation of progeny from backcrosses of triploid hybrids between Hordeum vulgare L. 2× and H. bulbosum L. 4× to H. vulgare. Theor. Appl. Genet. 88: 460 — 464.
Google Scholar
Pickering R. A., Hill A. M., Michel M., Timmerman-Vaughan G. M. 1995. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley H. vulgare L. chromosome 2 2l. Theor. Appl. Genet. 91: 1288 — 1292.
Google Scholar
Pickering R. A., Steffenson B. J., Hill A. M., Borovkova I. 1998. Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × H. bulbosum hybrid. Plant Breed. 117: 83 — 84.
Google Scholar
Pickering R. A., Malyshev S., Künzel G., Johnston P.A., Korzun V., Menke M., Schubert I. 2000a. Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor. Appl. Genet. 100: 27 — 31.
Google Scholar
Pickering R., Jonhston P.A., Timmerman-Vaughan G. M., Cromey M. G., Forbes E. M., Steffenson B. J., Fetch Jr. T. G., Zhang L., Murray B. G., Proesler G., Habekuß A., Kopahnke D., Schubert I. 2000b. Hordeum bulbosum — A new source of disease and pest resistance genes for use in barley breeding programmes. 30: 6 — 9.
Google Scholar
Pickering R., Niks R., Jonhston P.A., Butler R. 2004a. Importance of the secondary gene pool in barley genetics and breeding. II. Disease Resistance, agronomic performance and Quality. Czech J. Genet. Plant Breed. 40: 79 — 85.
Google Scholar
Pickering R. A., Hudakova S., Houben A., Jonston P. A., Butler R. C. 2004b. Reduced metaphase I associations between the short arms of homologous chromosomes in a Hordeum vulgare L. × H. bulbosum diploid hybrid influences the frequency of recombinant progeny. Theor. Appl. Genet. 109: 911 — 916.
Google Scholar
Pickering R., Klatte S., Butler R. C. 2005. Reduced chromosome association between the short arms of 5H homologues in Hordeum vulgare L. at metaphase I. Plant Breed. 124: 416 — 418.
Google Scholar
Pickering R., Klatte S., Butler R. C. 2006a. Identification of all chromosome arms and their involvement in meiotic homoelogous associations at metaphase I in 2 Hordeum vulgare L. × Hordeum bulbosum L hybrids. Genome 49: 73 — 78.
Google Scholar
Pickering R., Ruge-Wehling B., Johnson P.A., Schweizer G., Ackermann P., Wehling P. 2006b. The transfer of a gene conferring resistance to scald Rynchosporium secalis from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed. 125: 576 — 579.
Google Scholar
Ruge B., Linz A., Pickering R., Proeseler G., Greif P., Wehling P. 2003. Mapping of Rym14Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor. Appl. Genet. 107: 965 — 971.
Google Scholar
Russell J. R., Ellis R. P., Thomas W. T. B., Waugh R., Provan J., Booth A., Fuller J., Lawrence P., Young G., Powell W. 2000. A retrospective analysis of spring barley germplasm development from foundation genotypes' to currently successful cultivars. Mol. Breed. 6: 553 — 568.
Google Scholar
Shtaya M. J. Y., Sillero J. C., Rubiales D. 2006a. Search of partial resistance against Puccinia hordei in barley landraces from the Fertile Crescent. Plant Breed. 125:343 — 346.
Google Scholar
Shtaya M. J. Y., Sillero J. C., Rubiales D. 2006b. Screening for resistance to leaf rust Puccinia hordei in collections of Spanish barleys. Breed Sci. 56:173 — 177.
Google Scholar
Shtaya M. J. Y., Sillero J. C., Rubiales D. 2006c. Infection of new pathotype of Puccinia hordei with virulence for the resistance gene Rph7. European J. Plant Pathol. 162: 103 — 106.
Google Scholar
Shtaya M. J. Y., Sillero J. C., Flath K., Pickering R., Rubiales D. 2007. The resistance to leaf rust and powdery mildew of recombinant lines of barley Hordeum vulgare L. derived from H. vulgare × H. bulbosum crosses. Plant Breed. 126: 259 — 267.
Google Scholar
Smit G., Parlevliet J. E. 1990. Mature plant resistance of barley to leaf rust, another type of resistance. Euphytica 50: 159 — 162.
Google Scholar
Steffenson B. J. 2002. Coordinator’s report: Disease and pest resistance genes. Barley Gen. Newsl. 32: 179 — 184.
Google Scholar
Thomas W. T. B. 2003. Prospects for molecular breeding of barley. Ann. Appl. Biol. 142: 1 — 12.
Google Scholar
Thörn E. C. 1992a. The influence of genotype and environment on seed and embryo development in barley Hordeum vulgare L. after crossing with Hordeum bulbosum L. Euphytica 59:109 — 118.
Google Scholar
Thörn E. C. 1992b. Embryo development in two barley genotypes after self-pollination and pollination with Hordeum bulbosum L. Euphytica 65: 93 — 98.
Google Scholar
Walters D. R., Avrova A., Bingham I. J., Burnett F. J., Fountaine J., Havis N. D., Hoad S. P., Hughes G., Looseley M., Oxley S. J. P., Renwick A., Topp C. F. E., Newton A. C. 2012. Control of foliar diseases in barley: towards an integrated approach. Eur. J. Plant Pathol. 133: 33 — 73.
Google Scholar
Walters D. R., Ratsep J., Havis N. D. 2013. Controlling crop diseases using induced resistance: challenges for the future. J. Experimental Botany 64: 1263 — 1280.
Google Scholar
Walther U., Rapke H., Proeseler G., Szigat G. 2000. Hordeum bulbosum — a new source of disease resistance — transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed. 119: 215 — 218.
Google Scholar
Wang L., Wang Y., Wang Z., Marcel T.C., Niks R. E., Qi X. 2010. The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. Theor. Appl. Genet. 121: 857 — 864.
Google Scholar
Weerasena J. S., Steffenson B. J., Falk A. B. 2004. Conversion of an amplified fragment length polymorphism marker into a co-dominant marker in the mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor. Appl. Gen. 1084: 712 — 719.
Google Scholar
Weibull J., Walther U., Sato K., Habekuβ A., Kopahnke D., Proeseler G. 2003. Diversity in resistance to biotic stresses. In: von Bothmer R., Van Hintum Th., Knüpffer H., Sato K. Eds, Diversity in Barley Hordeum vulgare, Elsevier Science B.V., Amsterdam, The Netherlands: 143 — 178.
Google Scholar
Wendler N., Mascher M., Nöh C., Himmelbach A., Scholz U., Ruge-Wehling B., Stein N. 2014. Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnology Journal 12: 1122 — 1131.
Google Scholar
Wendler N., Mascher M., Himmelbach A., Johnston P., Pickering P., Stein N. 2015. Bulbosum to Go: A Toolbox to Utilize Hordeum vulgare/bulbosum Introgressions for Breeding and Beyond. Molecular Plant 8: 1507 — 1519.
Google Scholar
Woldeab G., Finisz C., Singh H., Yuen J. 2006. Virulence spectrum of Puccinia hordei in barley production systems in Ethiopia. Plant Pathol. 55: 351 — 357.
Google Scholar
Wulff B. B. H., Horvath D. M., Ward E. R. 2011. Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology 14: 468 — 476.
Google Scholar
Zhang L., Pickering R., Murray B. 1999. Direct measurement of recombination in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization. Heredity 83: 304 — 309.
Google Scholar
Zhang L., Pickering R. A., Murray B. G. 2001. A Hordeum vulgare H. bulbosum tetraploid hybrid provides useful agronomic introgression lines for breeders. NZ J. Crop and Hort Sci. 29: 239 — 246.
Google Scholar
Zhang L., Murray B. G., Pickering R. A. 2002. Variable patterns of chromosome synapsis at pachytene in Hordeum vulgare H. bulbosum hybrids and their parents. Hereditas 137: 90 — 95.
Google Scholar
Authors
Jerzy H. Czemborj.h.czembor@ihar.edu.pl
Pracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie Poland
Authors
Aleksandra PietrusińskaPracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie Poland
Authors
Urszula PiechotaPracownia Gromadzenia i Oceny Roślin, Krajowe Centrum Roślinnych Zasobów Genowych Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy w Radzikowie Poland
Statistics
Abstract views: 161PDF downloads: 87
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Aleksandra Pietrusińska, Monika Żurek, Dariusz Mańkowski, The search for sources of biotic stress resistance in old varieties and landraces of wheat and triticale , Bulletin of Plant Breeding and Acclimatization Institute: No. 287 (2019): Special issue
- Urszula Piechota, Paweł Czembor , Barley and Blumeria graminis. Introduction to the host – pathogen interaction , Bulletin of Plant Breeding and Acclimatization Institute: No. 289 (2020): Regular issue
- Urszula Piechota, Paweł Czembor, Jerzy Czembor, Broadening of barley gene pool , Bulletin of Plant Breeding and Acclimatization Institute: No. 287 (2019): Special issue
- Aleksandra Pietrusińska , Pyramiding efficiency of the genes of resistance to powdery mildew (Blumeria graminis f.sp. tritici) and brown rust (Puccinia triticina) in winter wheat , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Jerzy Czembor, Aleksandra Pietrusińska, Kinga Smolińska, Interaction between powdery mildew (Blumeria graminis f.sp. hordei) resistance determined by mlo gene and economical value characteristics in winter barley , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Jerzy H. Czembor, Elżbieta Czembor, Aneta Kisiela, Elżbieta Wnuk, Resistance to powdery mildew (Blumeria graminis f.sp. hordei) of spring barley varieties covered by the Post-registration Variety Testing Program in 2022 , Bulletin of Plant Breeding and Acclimatization Institute: No. 299 (2023): Regular issue
- Aleksandra Pietrusińska, Jerzy H. Czembor, Virulence structure of the Blumeria graminis f. sp. tritici population occurring in Poland across 2012–2013 , Bulletin of Plant Breeding and Acclimatization Institute: No. 274 (2014): Regular issue
- Henryk J. Czembor, Olga Doraczyńska, Jerzy H. Czembor, Resistance of triticale cultivars to powdery mildew (Blumeria graminis ff. ssp.) occurring in Poland , Bulletin of Plant Breeding and Acclimatization Institute: No. 267 (2013): Regular issue
- Aleksandra Pietrusińska, Jerzy H. Czembor, Gene pyramiding — a tool commonly used in breeding programs breeding programs , Bulletin of Plant Breeding and Acclimatization Institute: No. 278 (2015): Regular issue
- Aleksandra Pietrusińska, Monika Żurek, The impact of powdery mildew on cereals and grasses on wheat crops in the context of climate change , Bulletin of Plant Breeding and Acclimatization Institute: No. 301 (2024): Regular issue