Fuzarioza kłosów pszenicy. Część 2. Geny oraz loci cech ilościowych (QTL) kontrolujące odporność pszenicy oraz mechanizm ich działania

Tomasz Góral

t.goral@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy (Poland)
https://orcid.org/0000-0001-9130-6109

Abstrakt

Fuzarioza kłosów jest chorobą powodowaną przez grzyby z rodzaju Fusarium. Choroba porażą wszystkie zboża uprawiane w Polsce. Największe szkody powoduje w uprawach pszenicy zwyczajnej. Szkodliwość fuzariozy kłosów wynika przede wszystkim z zanieczyszczania ziarna wtórnymi metabolitami Fusarium – mykotoksynami. Mają one szkodliwie działanie dla ludzi i zwierząt w przypadku spożycia żywności lub paszy je zawierającej. W drugiej części pracy przedstawiono zagadnienia związane z odpornością pszenicy na fuzariozę kłosów. Scharakteryzowano typy odporności na chorobę. Opisano zidentyfikowane dotychczas geny odporności lub loci cech ilościowych powiązane z odpornością. Dla najważniejszych genów odporności przedstawiono  dotychczas zidentyfikowane mechanizmy ich działania.


Słowa kluczowe:

Fusarium, fuzarioza kłosów, loci cech ilościowych, Triticum, mykotoksyny, odporność

Abramson, D., Gan, Z., Clear, R.M., Gilbert, J., Marquardt, R.R., 1998. Relationships among deoxynivalenol, ergosterol and Fusarium exoantigens in Canadian hard and soft wheat. Int. J. Food Microbiol. 45, 217–224. https://doi.org/10.1016/S0168-1605(98)00164-0
Google Scholar

Ackerman, A.J., Holmes, R., Gaskins, E., Jordan, K.E., Hicks, D.S., Fitzgerald, J., Griffey, C.A., Mason, R.E., Harrison, S.A., Murphy, J.P., Cowger, C., Boyles, R.E., 2022. Evaluation of methods for measuring Fusarium-damaged kernels wheat. Agronomy 12, 532. https://doi.org/10.3390/AGRONOMY12020532/S1
Google Scholar

Akohoue, F., Koch, S., Plieske, J., Miedaner, T., 2022. Separation of the effects of two reduced height (Rht) genes and genomic background to select for less Fusarium head blight of short-strawed winter wheat (Triticum aestivum L.) varieties. Theor. Appl. Genet. 2022 1, 1–24. https://doi.org/10.1007/S00122-022-04219-4
Google Scholar

Alisaac, E., Behmann, J., Rathgeb, A., Karlovsky, P., Dehne, H.-W., Mahlein, A.-K., 2019. Assessment of Fusarium infection and mycotoxin contamination of wheat kernels and flour using hyperspectral imaging. Toxins 11, 556. https://doi.org/10.3390/toxins11100556
Google Scholar

Alisaac, E., Rathgeb, A., Karlovsky, P., Mahlein, A.K., 2021. Fusarium head blight: Effect of infection timing on spread of Fusarium graminearum and spatial distribution of deoxynivalenol within wheat spikes. Microorganisms 9, 1–12. https://doi.org/10.3390/microorganisms9010079
Google Scholar

Anderson, J.A., Stack, R.W., Liu, S., Waldron, B.L., Fjeld, A.D., Coyne, C., Moreno-Sevilla, B., Fetch, J.M., Song, Q.J., Cregan, P.B., Frohberg, R.C., 2001. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet. 102, 1164–1168. https://doi.org/10.1007/s001220000509
Google Scholar

Argyris, J., TeKrony, D., Hershman, D., VanSanford, D., Hall, M., Kennedy, B., Rucker, M., Edge, C., 2005. Fusarium head blight infection following point inoculation in the greenhouse compared with movement of Fusarium graminearum in seed and floral components. Crop Sci. 45, 626–634. https://doi.org/10.2135/cropsci2005.0626
Google Scholar

Argyris, J., Van Sanford, D., TeKrony, D., 2003. Fusarium graminearum infection during wheat seed development and its effect on seed quality. Crop Sci. 43, 1782–1788. https://doi.org/10.2135/cropsci2003.1782
Google Scholar

Bai, G., Kolb, F.L., Shaner, G., Domier, L.L., 1999. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89, 343–348. https://doi.org/10.1094/PHYTO.1999.89.4.343
Google Scholar

Bai, G.H., Desjardins, A.E., Plattner, R.D., 2002. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153, 91–98. https://doi.org/10.1023/A:1014419323550
Google Scholar

Bai, G.H., Plattner, R., Desjardins, A., Kolb, F., Jones, S.S., 2001. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breed. 120, 1–6. https://doi.org/10.1046/j.1439-0523.2001.00562.x
Google Scholar

Bai, G.H., Shaner, G., Ohm, H., 2000. Inheritance of resistance to Fusarium graminearum in wheat. Theor. Appl. Genet. 100, 1–8. https://doi.org/10.1007/PL00002902
Google Scholar

Bakhsh, A., Mengistu, N., Baenziger, P.S., Dweikat, I., Wegulo, S.N., Rose, D.J., Bai, G., Eskridge, K.M., 2013. Effect of Fusarium head blight resistance gene on agronomic and end-use quality traits of hard red winter wheat. Crop Sci. 53, 793. https://doi.org/10.2135/cropsci2012.06.0364
Google Scholar

Bakker, M.G., Brown, D.W., Kelly, A.C., Kim, H.S., Kurtzman, C.P., Mccormick, S.P., O’Donnell, K.L., Proctor, R.H., Vaughan, M.M., Ward, T.J., 2018. Fusarium mycotoxins: a trans-disciplinary overview. Can. J. Plant Pathol. 40, 161–171. https://doi.org/10.1080/07060661.2018.1433720
Google Scholar

Barbedo, J.G.A., Tibola, C.S., Fernandes, J.M.C., 2015. Detecting Fusarium head blight in wheat kernels using hyperspectral imaging. Biosyst. Eng. 131, 65–76. https://doi.org/10.1016/j.biosystemseng.2015.01.003
Google Scholar

Basnet, B. R., Glover, K.D., Ibrahim, A.M.H., Yen, Y., Chao, S., 2012. A QTL on chromosome 2DS of ‘Sumai 3’ increases susceptibility to Fusarium head blight in wheat. Euphytica 186, 91–101. https://doi.org/10.1007/s10681-011-0495-x
Google Scholar

Berthiller, F., Crews, C., Dall’Asta, C., Saeger, S. De, Haesaert, G., Karlovsky, P., Oswald, I.P., Seefelder, W., Speijers, G., Stroka, J., 2013. Masked mycotoxins: A review. Mol. Nutr. Food Res. 57, 165–186. https://doi.org/10.1002/mnfr.201100764
Google Scholar

Berthiller, F., Schuhmacher, R., Adam, G., Krska, R., 2009. Formation, determination and significance of masked and other conjugated mycotoxins. Anal. Bioanal. Chem. 395, 1243–52. https://doi.org/10.1007/s00216-009-2874-x
Google Scholar

Boutigny, A.-L., Atanasova-Pénichon, V., Benet, M., Barreau, C., Richard-Forget, F., 2010. Natural phenolic acids from wheat bran inhibit Fusarium culmorum trichothecene biosynthesis in vitro by repressing Tri gene expression. Eur. J. Plant Pathol. 127, 275–286. https://doi.org/10.1007/s10658-010-9592-2
Google Scholar

Boutigny, A.-L., Richard-Forget, F., Barreau, C., 2008. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol. 121, 411–423. https://doi.org/10.1007/s10658-007-9266-x
Google Scholar

Brown, N.A., Urban, M., van de Meene, A.M.L., Hammond-Kosack, K.E., 2010. The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol. 114, 555–571. https://doi.org/10.1016/J.FUNBIO.2010.04.006
Google Scholar

Buerstmayr, H., Ban, T., Anderson, J.A., 2009. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: A review. Plant Breed. 128, 1–26. https://doi.org/10.1111/j.1439-0523.2008.01550.x
Google Scholar

Buerstmayr, M., Buerstmayr, H., 2016. The semidwarfing alleles Rht-D1b and Rht-B1b show marked differences in their associations with anther-retention in wheat heads and with Fusarium head blight susceptibility. Phytopathology 106, 1544–1552.
Google Scholar

Byczkowski, B., Macioszek, V.K., Kononowicz, A.K., 2009. Roślinne białka PR w odpowiedzi obronnej na atak grzybów nekrotroficznych. Postępy Biol. Komórki 36, 121–134.
Google Scholar

Cainong, J.C., Bockus, W.W., Feng, Y., Chen, P., Qi, L., Sehgal, S.K., Danilova, T. V., Koo, D.H., Friebe, B., Gill, B.S., 2015. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor. Appl. Genet. 128, 1019–1027. https://doi.org/10.1007/s00122-015-2485-1
Google Scholar

Cirlini, M., Generotti, S., Dall’Erta, A., Lancioni, P., Ferrazzano, G., Massi, A., Galaverna, G., Dall’Asta, C., 2013. Durum wheat (Triticum durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions. Toxins (Basel). 6, 81–95. https://doi.org/10.3390/toxins6010081
Google Scholar

Cuthbert, P. a, Somers, D.J., Brulé-Babel, A., 2007. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 114, 429–37. https://doi.org/10.1007/s00122-006-0439-3
Google Scholar

Dhokane, D., Karre, S., Kushalappa, A.C., McCartney, C., 2016. Integrated metabolo-transcriptomics reveals Fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS One 11, 1–27. https://doi.org/10.1371/journal.pone.0155851
Google Scholar

Doohan, F.M., Parry, D.W., Jenkinson, P., Nicholson, P., 1998. The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathol. 47, 197–205. https://doi.org/10.1046/j.1365-3059.1998.00218.x
Google Scholar

Dowell, F.E., Ram, M.S., Seitz, L.M., 1999. Predicting scab, vomitoxin, and ergosterol in single wheat kernels using near-infrared spectroscopy. Cereal Chem. 76, 573–576. https://doi.org/10.1094/CCHEM.1999.76.4.573
Google Scholar

Dyer, R.B., Plattner, R.D., Kendra, D.F., Brown, D.W., 2005. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. J. Agric. Food Chem. 53, 9281–9287. https://doi.org/10.1021/jf051441a
Google Scholar

Eldakak, M., Das, A., Zhuang, Y., Rohila, J., Glover, K., Yen, Y., 2018. A quantitative proteomics view on the function of Qfhb1, a major QTL for Fusarium head blight resistance in wheat. Pathogens 7, 58. https://doi.org/10.3390/pathogens7030058
Google Scholar

Engle, J.S., Lipps, P.E., Graham, T.L., Boehm, M.J., 2004. Effects of choline, betaine, and wheat floral extracts on growth of Fusarium graminearum. Plant Dis. 88, 175–180. https://doi.org/10.1094/pdis.2004.88.2.175
Google Scholar

Eudes, F., Comeau, A., Rioux, S., Collin, J., 2001. Impact of trichothecenes on Fusarium head blight [Fusarium graminearum] development in spring wheat (Triticum aestivum). Can. J. Plant Pathol. 23, 318–322. https://doi.org/10.1080/07060660109506948
Google Scholar

Foroud, N.A., Baines, D., Gagkaeva, T.Y., Thakor, N., Badea, A., Steiner, B., Bürstmayr, M., Bürstmayr, H., 2019. Trichothecenes in cereal grains - An update. Toxins (Basel). 11. https://doi.org/10.3390/toxins11110634
Google Scholar

Foroud, N.A., Eudes, F., 2009. Trichothecenes in cereal grains. Int. J. Mol. Sci. 10, 147–173. https://doi.org/10.3390/ijms10010147
Google Scholar

Glazebrook, J., 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–27. https://doi.org/10.1146/annurev.phyto.43.040204.135923
Google Scholar

Góral, T., Ochodzki, P., Nielsen, L.K., Walentyn-Góral, D., 2021. Species of the genus Fusarium and Fusarium toxins in the grain of winter and spring wheat in Poland. Biul. Inst. Hod. i Aklim. Roślin 296, 25–42. https://doi.org/10.37317/biul-2021-0011
Google Scholar

Gunnaiah, R., Kushalappa, A.C., Duggavathi, R., Fox, S., Somers, D.J., 2012. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One 7, e40695. https://doi.org/10.1371/journal.pone.0040695
Google Scholar

Gunupuru, L.R., Perochon, A., Doohan, F.M., 2017. Deoxynivalenol resistance as a component of FHB resistance. Trop. Plant Pathol. 42, 175–183. https://doi.org/10.1007/s40858-017-0147-3
Google Scholar

Guo, J., Zhang, X., Hou, Y., Cai, J., Shen, X., Zhou, T., Xu, H., Ohm, H.W., Wang, Hongwei, Li, A., Han, F., Wang, Honggang, Kong, L., 2015. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor. Appl. Genet. 128, 2301–2316. https://doi.org/10.1007/s00122-015-2586-x
Google Scholar

Handa, H., Ban, T., 2008. Relationship between plant height and Fusarium head blight resistance for the QTL on the wheat chromosome 2DS. W: Proceedings of the 11th International Wheat Genetics Symposium, 24-29 sierpnia 2008, Brisbane, Australia. Sydney University Pres, str. 744-746.
Google Scholar

Hane, J.K., Paxman, J., Jones, D.A.B., Oliver, R.P., de Wit, P., 2020. “CATAStrophy,” a genome-informed trophic classification of filamentous plant pathogens – how many different types of filamentous plant pathogens are there? Front. Microbiol. 10, 3088. https://doi.org/10.3389/FMICB.2019.03088/BIBTEX
Google Scholar

He, X., Singh, P.K., Dreisigacker, S., Singh, S., Lillemo, M., Duveiller, E., 2016. Dwarfing genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility and low anther extrusion in two bread wheat populations. PLoS One 11, 1–14. https://doi.org/10.1371/journal.pone.0162499
Google Scholar

Herter, C.P., Ebmeyer, E., Kollers, S., Korzun, V., Leiser, W.L., Würschum, T., Miedaner, T., 2018. Rht24 reduces height in the winter wheat population ‘Solitär × Bussard’ without adverse effects on Fusarium head blight infection. Theor. Appl. Genet. 131, 1–10. https://doi.org/10.1007/s00122-018-3076-8
Google Scholar

Hilton, A.J., Jenkinson, P., Hollins, T.W., Parry, D.W., 1999. Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathol. 48, 202–208. https://doi.org/10.1046/j.1365-3059.1999.00339.x
Google Scholar

Horevaj, P., Gale, L., Milus, E., 2011. Resistance in winter wheat lines to initial infection and spread within spikes by deoxynivalenol and nivalenol chemotypes of Fusarium graminearum. Plant Dis. 95, 31–37. https://doi.org/10.1016/j.fm.2010.09.012
Google Scholar

Hu, W., Gao, D., Zhang, Y., Zheng, X., Lu, C., Wu, H., Xu, W., Cheng, S., Jia, J., 2023. Mapping quantitative trait loci for type II Fusarium head blight resistance in two wheat recombinant inbred line populations derived from Yangmai 4 and Yangmai 5. Plant Dis. 107, 422–430. https://doi.org/10.1094/PDIS-06-22-1338-RE
Google Scholar

International Brachypodium Initiative, 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768. https://doi.org/10.1038/nature08747
Google Scholar

Jiang, G.-L., Dong, Y., Shi, J., Ward, R.W., 2007a. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor. Appl. Genet. 115, 1043–52. https://doi.org/10.1007/s00122-007-0630-1
Google Scholar

Jiang, G.-L., Shi, J., Ward, R.W., 2007b. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. Theor. Appl. Genet. 116, 3–13. https://doi.org/10.1007/s00122-007-0641-y
Google Scholar

Jin, Y., Zhang, X., Rudd, R., Rudd, J., 1999. A point inoculation method for evaluating scab resistance in wheat, w: Wagester, J.A., Ward, R., Hart, L.P., Hazen, S.P., Lewis, J., Borden, H. (Red.), 1999 National Fusarium Head Blight Forum. Michigan State University, East Lansing. MI, USA, s. 128.
Google Scholar

Kage, U., Karre, S., Kushalappa, A.C., McCartney, C., 2017. Identification and characterization of a Fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnol. J. 15, 447–457. https://doi.org/10.1111/pbi.12641
Google Scholar

Kluger, B., Bueschl, C., Lemmens, M., Michlmayr, H., Malachova, A., Koutnik, A., Maloku, I., Berthiller, F., Adam, G., Krska, R., Schuhmacher, R., 2015. Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines. PLoS One 10, e0119656. https://doi.org/10.1371/journal.pone.0119656
Google Scholar

Kociuba, W., Kramek, A., 2004. Analiza niektórych właściwości biologii kwitnienia pszenżyta przydatnych dla hodowli i reprodukcji odmian. Ann. UMCS 59, 115–122.
Google Scholar

Kosaka, A., Ban, T., Manickavelu, A., 2015. Genome-wide transcriptional profiling of wheat infected with Fusarium graminearum. Genomics Data 5, 260–262. https://doi.org/10.1016/j.gdata.2015.06.020
Google Scholar

Kubo, K., Fujita, M., Kawada, N., Nakajima, T., Nakamura, K., Maejima, H., Ushiyama, T., Hatta, K., Matsunaka, H., 2013. Minor differences in anther extrusion affect resistance to Fusarium head blight in wheat. J. Phytopathol. 161, 308–314. https://doi.org/10.1111/jph.12060
Google Scholar

Kubo, K., Kawada, N., Fujita, M., Hatta, K., Oda, S., Nakajima, T., 2010. Effect of cleistogamy on Fusarium head blight resistance in wheat. Breed. Sci. 60, 405–411. https://doi.org/10.1270/jsbbs.60.405
Google Scholar

Lamper, C., Teren, J., Bartok, T., Komoroczy, R., Mesterhazy, A., Sagi, F., 2000. Predicting DON contamination in Fusarium-infected wheat grains via determination of the ergosterol content. Cereal Res. Commun. 28, 337–344. https://doi.org/10.1007/BF03543613/METRICS
Google Scholar

Langevin, F., Eudes, F., Comeau, A., 2004. Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur. J. Plant Pathol. 110, 735–746. https://doi.org/10.1023/B:EJPP.0000041568.31778.ad
Google Scholar

Lemmens, M., Buerstmayr, H., Krska, R., Schuhmacher, R., Grausgruber, H., Ruckenbauer, P., 2004. The effect of inoculation treatment and long-term application of moisture on Fusarium head blight symptoms and deoxynivalenol contamination in wheat grains. Eur. J. Plant Pathol. 110, 299–308. https://doi.org/10.1023/B:EJPP.0000019801.89902.2a
Google Scholar

Lemmens, M., Scholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher, R., Adam, G., Buerstmayr, H., Mesterházy, A., Krska, R., Ruckenbauer, P., 2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol. Plant. Microbe. Interact. 18, 1318–1324. https://doi.org/10.1094/MPMI-18-1318
Google Scholar

Lemmens, M., Steiner, B., Sulyok, M., Nicholson, P., Mesterhazy, A., Buerstmayr, H., 2016. Masked mycotoxins: does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? World Mycotoxin J. 9, 741–754. https://doi.org/10.3920/WMJ2015.2029
Google Scholar

Li, C., Zhu, H., Zhang, C., Lin, F., Xue, S., Cao, Y., Zhang, Z., Zhang, L., Ma, Z., 2008. Mapping QTLs associated with Fusarium-damaged kernels in the Nanda 2419 × Wangshuibai population. Euphytica 163, 185–191. https://doi.org/10.1007/s10681-007-9626-9
Google Scholar

Li, G., Zhou, J., Jia, H., Gao, Z., Fan, M., Luo, Y., Zhao, P., Xue, S., Li, N., Yuan, Y., Ma, S., Kong, Z., Jia, L., An, X., Jiang, G., Liu, W., Cao, W., Zhang, R., Fan, J., Xu, X., Liu, Y., Kong, Q., Zheng, S., Wang, Y., Qin, B., Cao, S., Ding, Y., Shi, J., Yan, H., Wang, X., Ran, C., Ma, Z., 2019. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat. Genet. 2019 517 51, 1106–1112. https://doi.org/10.1038/s41588-019-0426-7
Google Scholar

Li, T., Zhang, H., Huang, Y., Su, Z., Deng, Y., Liu, H., Mai, C., Yu, G., Li, Huili, Yu, L., Zhu, T., Yang, L., Li, Hongjie, Zhou, Y., 2019. Effects of the Fhb1 gene on Fusarium head blight resistance and agronomic traits of winter wheat. Crop J. 7, 799–808. https://doi.org/10.1016/j.cj.2019.03.005
Google Scholar

Li, X., Shin, S., Heinen, S., Dill-Macky, R., Berthiller, F., Nersesian, N., Clemente, T., McCormick, S., Muehlbauer, G.J., 2015. Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol. Plant-Microbe Interact. 28, 1237–1246.
Google Scholar

Lionetti, V., Giancaspro, A., Fabri, E., Giove, S.L., Reem, N., Zabotina, O.A., Blanco, A., Gadaleta, A., Bellincampi, D., 2015. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. BMC Plant Biol. 15, 6. https://doi.org/10.1186/s12870-014-0369-1
Google Scholar

Liu, S.X., Pumphrey, M.O., Gill, B.S., Trick, H.N., Zhang, J.X., Dolezel, J., Chalhoub, B., Anderson, J.A., 2008. Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res. Commun. 36, 195–201. https://doi.org/10.1556/CRC.36.2008.Suppl.B.15
Google Scholar

Lu, Q., Lillemo, M., Skinnes, H., He, X., Shi, J., Ji, F., Dong, Y., Bjørnstad, A., 2013. Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor. Appl. Genet. 126, 317–34. https://doi.org/10.1007/s00122-012-1981-9
Google Scholar

Ma, Z., Xie, Q., Li, G., Jia, H., Zhou, J., Kong, Z., Li, N., Yuan, Y., 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor. Appl. Genet. https://doi.org/10.1007/s00122-019-03525-8
Google Scholar

Mesterhazy, A., 2020. Updating the breeding philosophy of wheat to Fusarium head blight (FHB): resistance components, QTL identification, and phenotyping – a review. Plants 9, 1702. https://doi.org/10.3390/plants9121702
Google Scholar

Mesterhazy, A., 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 114, 377–386. https://doi.org/10.1111/j.1439-0523.1995.tb00816.x
Google Scholar

Mesterházy, Á., 2003. Breeding wheat for Fusarium head blight resistance in Europe., w: Leonard, K.., Bushnell, W.R. (Red.), Fusarium head blight of wheat and barley. American Phytopathological Society (APS Press), ss. 211–240.
Google Scholar

Mesterházy, Á., Bartók, T., Mirocha, C.G., Komoróczy, R., 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118, 97–110. https://doi.org/10.1046/j.1439-0523.1999.118002097.x
Google Scholar

Mesterházy, A., Lehoczki-Krsjak, S., Varga, M., Szabó-Hevér, Á., Tóth, B., Lemmens, M., 2015. Breeding for FHB Resistance via Fusarium damaged kernels and deoxynivalenol accumulation as well as inoculation methods in winter wheat. Agric. Sci. 06, 970–1002. https://doi.org/10.4236/as.2015.69094
Google Scholar

Mesterházy, A., Tóth, B., Bartók, T., Varga, M., 2008. Breeding strategies against FHB in winter wheat and their relation to type I resistance. Cereal Res. Commun. 36, 37–43. https://doi.org/10.1556/CRC.36.2008.Suppl.B.6
Google Scholar

Miedaner, T., 1997. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed. 116, 201–220. https://doi.org/10.1111/j.1439-0523.1997.tb00985.x
Google Scholar

Miedaner, T., Lenhardt, M., Grehl, J., Gruner, P., Koch, S., 2022. Dwarfing gene Rht24 does not affect Fusarium head blight resistance in a large European winter wheat diversity panel. Euphytica 218. https://doi.org/10.1007/S10681-022-03028-6
Google Scholar

Miedaner, T., Moldovan, M., Ittu, M., 2003. Comparison of spray and point inoculation to assess resistance to Fusarium head blight in a multienvironment wheat trial. Phytopathology 93, 1068–1072. https://doi.org/10.1094/PHYTO.2003.93.9.1068
Google Scholar

Miedaner, T., Voss, H.-H., 2008. Effect of dwarfing genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci. 48, 2115. https://doi.org/10.2135/cropsci2008.02.0107
Google Scholar

Miller, S.S., Chabot, D.M.P., Ouellet, T., Harris, L.J., Fedak, G., 2004. Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (Triticum aestivum). Can. J. Plant Pathol. 26, 453–463. https://doi.org/10.1080/07060660409507165
Google Scholar

Nicholson, P., Simpson, D.R., Weston, G., Rezanoor, H.N., Lees, A.K., Parry, D.W., Joyce, D., Centre, J.I., Lane, C., 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Mol. Plant Pathol. 53, 17–37. https://doi.org/10.1006/pmpp.1998.0170
Google Scholar

Paudel, B., Zhuang, Y., Galla, A., Dahal, S., Qiu, Y., Ma, A., Raihan, T., Yen, Y., 2020. WFhb1-1 plays an important role in resistance against Fusarium head blight in wheat. Sci. Rep. 10. https://doi.org/10.1038/s41598-020-64777-9
Google Scholar

Peiris, K.H.S., Pumphrey, M.O., Dong, Y., Maghirang, E.B., Berzonsky, W., Dowell, F.E., 2010. Near-infrared spectroscopic method for identification of Fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels. Cereal Chem. 87, 511–517. https://doi.org/10.1094/CCHEM-01-10-0006
Google Scholar

Perkowski, J., Wiwart, M., Busko, M., Laskowska, M., Berthiller, F., Kandler, W., Krska, R., 2007. Fusarium toxins and total fungal biomass indicators in naturally contaminated wheat samples from north-eastern Poland in 2003. Food Addit. Contam. 24, 1292–1298. https://doi.org/10.1080/02652030701416566
Google Scholar

Ponts, N., Pinson-Gadais, L., Boutigny, A.-L., Barreau, C., Richard-Forget, F., 2011. Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathology 101, 929–934. https://doi.org/10.1094/PHYTO-09-10-0230
Google Scholar

Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, R., Kuchler, K., Glössl, J., Luschnig, C., Adam, G., 2003. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 278, 47905–47914. https://doi.org/10.1074/jbc.M307552200
Google Scholar

Pritsch, C., Muehlbauer, G.J., Bushnell, W.R., Somers, D.A., Vance, C.P., 2000. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol. Plant. Microbe. Interact. 13, 159–169. https://doi.org/10.1094/MPMI.2000.13.2.159
Google Scholar

Proctor, R.H., Hohn, T.M., McCormick, S.P., 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 8, 593–601.
Google Scholar

Pumphrey, M.O., Bernardo, R., Anderson, J.A., 2007. Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci. 47, 200–206. https://doi.org/10.2135/cropsci2006.03.0206
Google Scholar

Qi, L.L., Pumphrey, M.O., Friebe, B., Chen, P.D., Gill, B.S., 2008. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor. Appl. Genet. 117, 1155–1166. https://doi.org/10.1007/s00122-008-0853-9
Google Scholar

Rawat, N., Pumphrey, M.O., Liu, S., Zhang, X., Tiwari, V.K., Ando, K., Trick, H.N., Bockus, W.W., Akhunov, E., Anderson, J.A., Gill, B.S., 2016. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat. Genet. 48, 1576–1580. https://doi.org/10.1038/ng.3706
Google Scholar

Ren, J., Wang, Z., Du, Z., Che, M., Zhang, Y., Quan, W., Wang, Y., Jiang, X., Zhang, Z., 2018. Detection and validation of a novel major QTL for resistance to Fusarium head blight from Triticum aestivum in the terminal region of chromosome 7DL. Theor. Appl. Genet. https://doi.org/10.1007/s00122-018-3213-4
Google Scholar

Salameh, A., Buerstmayr, M., Steiner, B., Neumayer, A., Lemmens, M., Buerstmayr, H., 2011. Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Mol. Breed. 28, 485–494. https://doi.org/10.1007/s11032-010-9498-x
Google Scholar

Schaafsma, a W., Savard, M.E., Clear, R., Dexter, J., 2004. Methods and issues regarding detection of deoxynivalenol, Fusarium-damaged kernels, and Fusarium spp. in commercial grain in Canada. Can. J. Plant Pathol. Can. Phytopathol. 26, 443–452.
Google Scholar

Schaller, F., Schaller, A., Stintzi, A., 2004. Biosynthesis and metabolism of jasmonates. J. Plant Growth Regul. 23, 179–199. https://doi.org/10.1007/s00344-004-0047-x
Google Scholar

Schroeder, H.W., Christensen, J.J., 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53, 831-838.
Google Scholar

Schweiger, W., Boddu, J., Shin, S., Poppenberger, B., Berthiller, F., Lemmens, M., Muehlbauer, G.J., Adam, G., 2010. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol. Plant. Microbe. Interact. 23, 977–986. https://doi.org/10.1094/MPMI-23-7-0977
Google Scholar

Schweiger, W., Pasquet, J.-C., Nussbaumer, T., Paris, M.P.K., Wiesenberger, G., Macadré, C., Ametz, C., Berthiller, F., Lemmens, M., Saindrenan, P., Mewes, H.-W., Mayer, K.F.X., Dufresne, M., Adam, G., 2013a. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes. Mol. Plant. Microbe. Interact. 26. https://doi.org/10.1094/MPMI-08-12-0205-R
Google Scholar

Schweiger, W., Steiner, B., Ametz, C., Siegwart, G., Wiesenberger, G., Berthiller, F., Lemmens, M., Jia, H., Adam, G., Muehlbauer, G.J., Kreil, D.P., Buerstmayr, H., 2013b. Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes. Mol. Plant Pathol. 14, 772–85. https://doi.org/10.1111/mpp.12048
Google Scholar

Shahin, M.A., Symons, S.J., 2011. Detection of Fusarium damaged kernels in Canada Western Red Spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis. Comput. Electron. Agric. 75, 107–112. https://doi.org/10.1016/j.compag.2010.10.004
Google Scholar

Singh, R.P., Ma, H., Rajaram, S., 1995. Genetic analysis of resistance to scab in spring wheat cultivar Frontana. Plant Dis. 79, 238–240. https://doi.org/10.1094/PD-79-0238
Google Scholar

Skinnes, H., Semagn, K., Tarkegne, Y., Marøy, A.G., Bjørnstad, Å., 2010. The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed. 129, 149–155. https://doi.org/10.1111/j.1439-0523.2009.01731.x
Google Scholar

Spanic, V., Lemmens, M., Drezner, G., Dvojkovic, K., 2011. Interrelations between height of winter wheat genotypes and resistance to fusarium head blight (FHB). Rom. Agric. Res. 28, 43-48.
Google Scholar

Srinivasachary, Gosman, N., Steed, A., Hollins, T.W., Bayles, R., Jennings, P., Nicholson, P., 2009. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor. Appl. Genet. 118, 695–702. https://doi.org/10.1007/s00122-008-0930-0
Google Scholar

Stenglein, S.A., 2009. Fusarium poae: A pathogen that needs more attention. J. Plant Pathol. 91, 25–36. https://doi.org/10.4454/jpp.v91i1.621
Google Scholar

van Eeuwijk, F.A., Mesterhazy, A., Kling, C.I., Ruckenbauer, P., Saur, L., Bürstmayr, H., Lemmens, M., Keizer, L.C.P., Maurin, N., Snijders, C.H.A., 1995. Assessing non-specificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum and F. nivale using a multiplicative model for interaction. Theor. Appl. Genet. 90, 221–228. https://doi.org/10.1007/BF00222205
Google Scholar

Vendl, O., Berthiller, F., Crews, C., Krska, R., 2009. Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS-MS. Anal. Bioanal. Chem. 395, 1347–54. https://doi.org/10.1007/s00216-009-2873-y
Google Scholar

Vogelgsang, S., Sulyok, M., Hecker, A., Jenny, E., Krska, R., Schuhmacher, R., Forrer, H.-R.R., 2008. Toxigenicity and pathogenicity of Fusarium poae and Fusarium avenaceum on wheat. Eur. J. Plant Pathol. 122, 265–276. https://doi.org/10.1007/s10658-008-9279-0
Google Scholar

Volpi, C., Janni, M., Lionetti, V., Bellincampi, D., Favaron, F., D’Ovidio, R. 2011. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Mol. Plant-Microbe Interact. 24, 1012–1019. https://doi.org/10.1094/MPMI-01-11-0021
Google Scholar

von der Ohe, C., Ebmeyer, E., Korzun, V., Miedaner, T., 2010. Agronomic and quality performance of winter wheat backcross populations carrying non-adapted Fusarium head blight resistance QTL. Crop Sci. 50, 2283. https://doi.org/10.2135/cropsci2010.03.0135
Google Scholar

Voss, H.-H., Holzapfel, J., Hartl, L., Korzun, V., Rabenstein, F., Ebmeyer, E., Coester, H., Kempf, H., Miedaner, T., 2008. Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breed. 127, 333–339. https://doi.org/10.1111/j.1439-0523.2008.01518.x
Google Scholar

Waldron, B.L., Moreno-Sevilla, B., Anderson, J. a., Stack, R.W., Frohberg, R.C., 1999. RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci. 39, 805–811.
Google Scholar

Wang, Y.Z., Miller, J.D., 1988. Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. J. Phytopathol. 122, 118–125. https://doi.org/10.1111/j.1439-0434.1988.tb00998.x
Google Scholar

Wegulo, S.N., Dowell, F.E., 2008. Near-infrared versus visual sorting of Fusarium-damaged kernels in winter wheat 2003–2005. https://doi.org/10.4141/CJPS0805
Google Scholar

Xue, S., Li, G., Jia, H., Xu, F., Lin, F., Tang, M., Wang, Y., An, X., Xu, H., Zhang, L., Kong, Z., Ma, Z., 2010. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 121, 147–156. https://doi.org/10.1007/s00122-010-1298-5
Google Scholar

Xue, S., Xu, F., Tang, M., Zhou, Y., Li, G., An, X., Lin, F., Xu, H., Jia, H., Zhang, L., Kong, Z., Ma, Z., 2011. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 123, 1055–63. https://doi.org/10.1007/s00122-011-1647-z
Google Scholar

Yan, W., Li, H.B., Cai, S.B., Ma, H.X., Rebetzke, G.J., Liu, C.J., 2011. Effects of plant height on type I and type II resistance to Fusarium head blight in wheat. Plant Pathol. 60, 506–512. https://doi.org/10.1111/j.1365-3059.2011.02426.x
Google Scholar

Zheng, N., Li, G., Zhang, K., Zheng, Hao, Yang, J., Yan, K., Shi, C., Su, Z., Chen, F., Wang, D., Zheng, Hongyuan, 2022. Analysis of Fhb1 gene and resistance to Fusarium head blight in 3,177 diverse wheat accessions. J. Cereal Sci. 104. https://doi.org/10.1016/j.jcs.2021.103387
Google Scholar

Zhuang, Y., Gala, A., Yen, Y., 2013. Identification of functional genic components of major Fusarium head blight resistance quantitative trait loci in wheat cultivar Sumai 3. Mol. Plant. Microbe. Interact. 26, 442–50. https://doi.org/10.1094/mpmi-10-12-0235-r
Google Scholar

Zwart, R.S., Muylle, H., Van Bockstaele, E., Roldán-Ruiz, I., 2008. Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat. Theor. Appl. Genet. 117, 813–28. https://doi.org/10.1007/s00122-008-0822-3
Google Scholar

Pobierz


Opublikowane
12/29/2023

Cited By / Share

Góral, T. (2023) „Fuzarioza kłosów pszenicy. Część 2. Geny oraz loci cech ilościowych (QTL) kontrolujące odporność pszenicy oraz mechanizm ich działania”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (300), s. 47–56. doi: 10.37317/biul-2023-0011.

Autorzy

Tomasz Góral 
t.goral@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Poland
https://orcid.org/0000-0001-9130-6109

Statystyki

Abstract views: 115
PDF downloads: 71


Licencja

Prawa autorskie (c) 2023 Tomasz Góral

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.

Inne teksty tego samego autora

1 2 3 > >>