Sampling methodology to establish a core collection of plant genetic resources: an overview of research
Marcin Studnicki
marcin_studnicki@sggw.edu.plKatedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)
Wiesław Mądry
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)
Abstract
A core collection is a sample of an entire crop germplasm collection, selected to adequately represent, with a minimum of redundancies, the genetic diversity in the entire collection. The purpose of forming plant core collections is generally to reduce the entire collection to a manageable size that facilitates easier systematic and rigorous characterization and evaluation of the genetic diversity in that collection for numerous phenotypic descriptors and for molecular attributes. These activities have the key importance for effective maintaining, managing and sustainable utilization of plant genetic resources for research and crop breeding programs. Many methods have been developed to construct core collections from the entire collections. In the establishing of core collections, the specifying of an appropriate sampling strategy is critical. A sampling strategy is the methodology of selection such a sample that adequately represents the variation or diversity in a population from which has been drawn.
Supporting Agencies
Keywords:
germplasm collection, core collections, sampling methodsReferences
Agrama H., Yan A., Wen Gui L., Fleet F., Robert C., Ming-Hsuan J., McClung M. 2009. Genetic Assessment of a Mini-Core Subset Developed from the USDA Rice Genebank. Crop Science 49: 1336 — 1346.
Google Scholar
Amalraj V.A., Balakrishnan R., Jebadhas A.W., Balasundaram N. 2006. Constituting a core collection of Saccharum spontaneum L. and comparison of three stratified random sampling procedures Genetic Resources and Crop Evolution 53: 1563 — 1572.
Google Scholar
Balakrishnan R., Nair N., Sreenivasan T. 2000. A method for establishing a core collection of Saccharum officinarum L. germplasm based on quantitative-morphological data Genetic Resources and Crop Evolution 47: 1 — 9.
Google Scholar
Balfourier F., Roussel V., Strelchenko P., Exbrayat-Vinson F., Sourdill P., Boutet G., Koenig J., Ravel C., Mitrofanova O., Beckert M., Charmet G. 2007. A worldwide bread wheat core collection arrayed in a 384-well plate. Theoretical and Applied Genetics 114: 1265 — 1275.
Google Scholar
Brown A.H.D. 1989 a. Core collections: a practical approach to genetic resources management. Genome 31: 818 — 824.
Google Scholar
Brown A. H. D. 1989 b. The case for core collections. In: The Use of Plant Genetic Resources (A.H.D. Brown, O. H. Frankel, D. R. Marshall and J. T. Williams, eds.). Cambridge University Press, Cambridge, UK.
Google Scholar
Brown A.H.D. 1995. The core collection at the crossroads. w: Core Collections of Plant Genetic Resources (T. Hodgkin, A.H.D. Brown, Th. J. L. van Hintum and E. A. V. Morales, eds.). John Wiley and Sons, UK.
Google Scholar
Brown A.H.D., Spillane C. 1999. Implementing core collections — principles, procedures, progress, problems and promise. w: Johnson, R.C. and T. Hodgkin. 1999. Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy.
Google Scholar
Bulińska-Radomska Z., Łapiński B., Arseniuk E. 2008. Plant genetic resources for food and agriculture in Poland – Second National Report. Plant Breeding and Acclimatization Institute, Radzików, Polska
Google Scholar
Chandra S., Huaman Z., Krishna S.H., Ortiz R. 2002. Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data — a simulation study. Theoretical and Applied Genetics 104: 1325 — 1334.
Google Scholar
Charmet G., Balfourier F. 1995. The use of geostatistics for sampling a core collection of perennial ryegrass population. Genetic Resources and Crop Evolution 42: 303 — 309.
Google Scholar
Chavarriaga-Aguirre P., Maya M., Tohme J., Duque M. C., Iglesias C., Bonierbale M. W., Kresovich S., Kochert G. 1999. Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Molecular Breeding 5: 263 — 273.
Google Scholar
Chung H.K., Kim K.W., Chung J.W., Lee J.R., Lee S.Y., Dixit A., Kang H.K., Zhao W., McNally K.L., Hamilton R.S., Gwag J.G., Park Y.J. 2009. Development of a core set from a large rice collection using a modified heuristic algorithm to retain maximum diversity. Journal of Integrative Plant Biology 51: 1116 — 1125.
Google Scholar
Cochran W.G. 1977. Sampling techniques, 3rd ed., John Wiley and Sons, New York, USA
Google Scholar
Crossa J., DeLacy I.H., Taba S. 1995. The use of multivariate methods in developing a core collection. Pp. in Core Collections of Plant Genetic Resources (T. Hodgkin, A.H.D. Brown, Th.J.L. van Hintum and E.A.V. Morales, eds.). John Wiley and Sons, UK: 77 — 92.
Google Scholar
Crossa J., Franco J. 2004. Statistical methods for classifying genotypes. Euphytica 153: 19 — 37.
Google Scholar
Diwan N., Bauchan G.R., McIntosh M.S. 1994. A core collection for the United States annual Medicago germplasm collection. Crop Sci. 34: 279 — 285.
Google Scholar
Diwan N., McIntosh M.S., Bauchan G. R. 1995. Methods of developing a core collection of annual Medicago species. Theoretical and Applied Genetics 90: 755 — 761.
Google Scholar
Dwivedi S. L., Puppala N., Upadhyaya H.D., Manivannan N., Singh S. 2008. Developing a core collection of peanut specific to Valencia market type. Crop Sci. 48: 625 — 632.
Google Scholar
Dwivedi S. L., Upadhyaya H. D., Hegd D.M. 2005. Development of core collection using geographic information and morphological descriptors in safflower (Carthamus tinctorius L.) germplasm. Genetic Resources and Crop Evolution 52: 821 — 830.
Google Scholar
Escribano P., Viruel M., Hormaza J. 2008. Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Annals of Applied Biology 153: 25 — 32.
Google Scholar
FAO 1996. Global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. FAO, Rome, Italy.
Google Scholar
FAO 2010. The second report on the state of the world’s plant genetic resources for food and agriculture. FAO, Rome, Italy.
Google Scholar
Franco J., Crossa J., Desphande S. 2010. Hierarchical multiple-factor analysis for classifying genotypes based on phenotypic and genetic data. Crop Sci. 50: 105 — 117.
Google Scholar
Franco J., Crossa J., Ribout J.M., Betran J. 2001. A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theoretical and Applied Genetics 103: 944 — 952.
Google Scholar
Franco J., Crossa J., Taba S., Shands H. 2003. A multivariate method for classifying cultivars and studying group x environment x trait interaction. Crop Sci. 43: 1249 — 1258.
Google Scholar
Franco J., Crossa J., Taba S., Shands H. 2005. A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci. 45: 1035 — 1044.
Google Scholar
Franco J., Crossa J., Villasenor J., Taba S., Eberhart S.A. 1998. Classifying genetic resources by categorical and continuous variables. Crop Sci. 38:1688 — 1696.
Google Scholar
Franco J., Crossa J., Villasenor J., Taba S., Eberhart S.A. 1999. A two-stage, three-way method for classifying genetic resources in multiple environments. Crop Sci. 39: 259 — 267.
Google Scholar
Franco J., Crossa J., Warburton M., Taba S. 2006. Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci. 46: 854 — 864.
Google Scholar
Frankel O.H. 1984. Genetic perspectives of germplasm conservation. In: W. Arber, K. Llimensee, W.J. Peacock D. P. Starlinger, (eds.). Genetic Manipulation: Impact on Man and Society. Cambridge University Press, Cambridge: 161 — 170.
Google Scholar
Frankel O.H., Brown A.H.D. 1984. Plant genetic resources today: A critical appraisal. W: J.H.W. Holden and J.T. Williams, eds. Crop Genetic Resources: Conservation and Evaluation. Allen and Unwin, Winchester, Massachusetts, USA.
Google Scholar
Gauthier M.F., Lumaret R. 1999. Genetic introgression on between tetraploid Dactylis glomerata sp. reichenbachii and glomerata in the French Alps. Insight from morphological and isoenzyme variation, plant systematic and evolution. Plant Syst. Evol. 241: 219 — 234.
Google Scholar
Ghamkhar K., Snowball R., Bennett S.J. 2005. Improving the utilization of germplasm of Trifolium spumosum L. by the development of a core collection using ecogeographical and molecular techniques. p: 262. W: M.O. Humphreys (ed.) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic, Wageningen, Holandia.
Google Scholar
Ghamkhar K., Snowball R., Wintle B.J., Brown A. H. D. 2008. Strategies for developing a core collection of bladder clover (Trifolium spumosum L.) using ecological and agro-morphological data. Australian Journal of Agricultural Research 59:1103 — 1112.
Google Scholar
Gouesnard B., Bataillon T.M., Decoux G., Rozale C., Schoen D.J., David J.L 2001. MSTRAT: An Algorithm for Building Germ Plasm Core Collections by Maximizing Allelic or Phenotypic Richness. Journal of Heredity 92: 93 — 94.
Google Scholar
Gouesnard B., Dallard J., Bertin P., Boyat A., and A. Charcosset. 2005. European maize landraces: Genetic diversity, core collection definition and methodology of use. Maydica 50: 225 — 234.
Google Scholar
Gowda C.L.L., Upadhyaya H.D., Dronavalli N., Singh S. 2011. Identification of large-seeded high-yielding stable kabuli chickpea germplasm lines for use in crop improvement. Crop Sci. 51: 198 — 209.
Google Scholar
Gower J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857 — 874.
Google Scholar
Grenier C., Bramel-Cox P. J., Noirot M., Prasada Rao K. E., Hamon, P. 2000b. Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs. non-random sampling procedures B. Using molecular markers. Theoretical and Applied Genetics 101: 197 — 202.
Google Scholar
Grenier C., Bramel Cox P. J., Noirot M., Prasada Rao K. E., Hamon, P. 2000 a. Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs. non-random sampling procedures A. Using morpho-agronomical and passport data. Theoretical and Applied Genetics 101: 190 — 196.
Google Scholar
Grenier C., Hamon P., Bramel.Cox P. J. 2001. Core Collection of Sorghum: II. Comparison of Three Random Sampling Strategies. Crop Sci. 41: 241 — 246.
Google Scholar
Hao C., Zhang X., Wang L., Dong Y., ShangX., Jia J. 2006. Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China. Molecular Breeding 17: 69 — 77.
Google Scholar
Harch B.D., Brasford K.E., DeLacy I.H., Lawrence P.K., Cruickshank A. 1995. Patterns of diversity in fatty acid composition in the Australian groundnut germplasm collection. Genetic Resources and Crop Evolution 42: 243 — 256.
Google Scholar
Hartung K. 2006. Biometrical approaches for analysing gene bank evaluation data on barley (Hordeum spec.). Rozprawa doktorska, Uniwersytet w Hohenheim, Stuttgart, Niemcy.
Google Scholar
Haussmann B.I.G., Parzies H.K., Presterl T., Susic Z., Miedaner T. 2004. Plant genetic resources in crop improvement (Review). Plant Genetic Resources: Characterization and utilization 2: 3 — 21.
Google Scholar
Holbrook C.C., Dong W. 2005. Development and evaluation of a mini core collection for the U.S. peanut germplasm collection. Crop Sci. 45: 1540 — 1544.
Google Scholar
Hu J., Zhu J., Xu H. 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics 101: 264 — 268.
Google Scholar
Igartua E., Gracia M., Lasa J., Medina B., Molina-Cano J., Montoya J., Romagosa I. 1998. The Spanish barley core collection. Genetic Resources and Crop Evolution 45: 475 — 481.
Google Scholar
Islam M.R., Hamid A., Khaliq O.A., Ahmed J.U., Haque M.M., Karim M.A. 2007. Genetic variability in flooding tolerance of mungbean (Vigna radiata L. Wilczek) genotypes. Euphytica 156: 247 — 255.
Google Scholar
Jahufer M.Z.Z., Cooper M., Harch B.D. 1997. Pattern analysis of the diversity of morphological plant attributes and herbage yield in a world collection of white clover (Trifolium repens L.) germplasm characterised in a summer moisture stress environment of Australia. Genetic Resources and Crop Evolution 44: 289 — 300.
Google Scholar
Jansen J., van Hintum Th. 2007. Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theoretical and Applied Genetics 114: 421 — 428.
Google Scholar
Johnson R.A., Wichern D.W. 2002. Applied multivariate statistical analysis. Prentice-Hall, Inc. Upper Saddle River, New Jork, USA.
Google Scholar
Johnson R.C. and Hodgkin T. 1999. Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy.
Google Scholar
Khan M. A., von Witzke-Ehbrecht S., Maass B. L., Becker H. C. 2009. Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genetic Resources and Crop Evolution 6: 19 — 30.
Google Scholar
Kim K.W., Chung H.K., Cho G.T., Ma K.H., Chandrabalan D.. Gwag J.G.. Kim T.S., Cho E.G., Park Y.J. 2007. PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23: 2155 — 2162.
Google Scholar
Kociuba W., Mądry W., Kramek A., Ukalski K., Studnicki M. 2010. Multivariate diversity of Polish winter triticale cultivars for spike and other traits. Plant Breeding and Seed Science 62:31 — 42
Google Scholar
Kölliker R., Stadelmann F.J., Reidy B., Nösberger J. 1999. Genetic variability of forage grass cultivars: A comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L.. Euphytica 106: 261 — 270.
Google Scholar
Krebs C. 1989. Ecological Methodology. HarperCollins, New York, USA.
Google Scholar
Krzanowski W.J. 1988. Principles of multivariate analysis: a user’s perspective. Oxford University Press, Oxford, UK.
Google Scholar
Levene H. 1960. Robust tests for equality of variances. In: Olkin, I. (Ed.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, Stanford.
Google Scholar
Li C. T., Shi, C. H., Wu, J. G., Xu, H. M., Zhang, H. Z. & Ren, Y. L. 2004. Methods of developing core collections based on the predicted genotypic value of rice (Oryza sativa L.). Theoretical and Applied Genetics 108: 1172 — 1176.
Google Scholar
Li Y., Shi Y., Cao Y., Wang T. 2005. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genetic Resources and Crop Evolution 51: 845 — 852.
Google Scholar
Li Y.X., Li T.H., Zhang H.L., Qi Y.W. 2007. Sampling strategy for a primary core collection of peach (Prunus persica (L.) Batsch.) germplasm. European Journal of Horticultural Science 72: 268 — 274.
Google Scholar
Li Z., Zhang H., Zeng Y., Yang Z., Shen S., Sun C., Wang X. 2002. Studies on sampling schemes for the establishment of core collection of rice landraces in Yunnan, China. Genetic Resources and Crop Evolution 49: 67 — 74.
Google Scholar
Liu X.L., Cai Q., Ma L., Wu C.W., Lu X., Ying X.M., Fan Y.H. 2009. Strategy of sampling for pre-core collection of sugarcane hybrid. Acta Agronomica Sinica 35: 1209 — 1216.
Google Scholar
LogozzoG., Donnoli R., Macaluso L., Papa R., Knüpffer H., Zeuli P. 2007. Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genetic Resources and Crop Evolution 54:. 1763 — 1779.
Google Scholar
Luan F., Delannay I., Staub J. E. 2008. Chinese melon (Cucumis melo L.) diversity analyses provide strategies for germplasm curation, genetic improvement, and evidentiary support of domestication patterns. Euphytica 164: 445 — 461.
Google Scholar
Mahajan R.K., Bisht I.S., Gautam P.L. 1999. Sampling strategies for developing Indian sesame core collection. Indian Journal of Plant Genetic Resources 12: 1 — 9
Google Scholar
Mahalakshmi V., Ng Q., Atalobhor J., Ogunsola D., Lawson M., Ortiz R. 2007. Development of a West African yam Dioscorea spp. core collection. Genetic Resources and Crop Evolution 54: 1817 — 1825.
Google Scholar
Malosetti M., Abadie T. 2001. Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits. Genetic Resources and Crop Evolution 48:.381 — 390.
Google Scholar
Marita J. M., Rodriguez J. M., Nienhuis J. 2000. Development of an algorithm identifying maximally diverse core collections. Genetic Resources and Crop Evolution 47: 515 — 526.
Google Scholar
McKhann H.I., Camilleri C., Bera A., Bataillon T., David J.L., Reboud X., Le Corre V., Gut I.G. , Brunel D. 2004. Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J. 38: 193 — 202.
Google Scholar
Mohammadi S.A., Prasanna M. 2003. Analysis of genetic diversity in crop plants — salient statistical tools and considerations. Crop Sci. 43: 1235 — 248.
Google Scholar
Mosjidis J. A., Klingler K. A. 2006. Genetic Diversity in the Core Subset of the U.S. Red Clover Germplasm. Crop Sci. 46: 758 — 762.
Google Scholar
Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70: 3321 — 3323.
Google Scholar
Neyman J. 1934. On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society 97: 558 — 625.
Google Scholar
Noirot M., Hamon S., Anthony F. 1996. The principal component scoring: a new method of constituting a core collection using quantitative data. Genetic Resources and Crop Evolution 43: 1 — 6.
Google Scholar
Ntundu W.H., Shillah S.A., Marandu W.Y.F., Christiansen J.L. 2006. Morphological diversity of bambara groundnut [Vigna subterranea (L.) Verdc.] landraces in Tanzania. Genetic Resources and Crop Evolution 53: 367 — 378
Google Scholar
Oliveira M. F., Nelson R. L., Geraldi I. O., Cruz C. D., de Toledo J. F. F. 2010. Establishing a soybean germplasm core collection. Field Crops Research 119: 277 — 289.
Google Scholar
Olukolu B.A., Mayes S., Stadler F., Ng N.Q., Fawole I., Dominique D., Azam-Ali S.N., Abbott A.G., Kole C. 2011. Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) as revealed by phenotypic descriptors and DArT marker analysis. Genetic Resources and Crop Evolution DOI: 10.1007/s10722-011-9686-5.
Google Scholar
Ramanatha Rao V., Hodgkin T. 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture 68: 1 — 19.
Google Scholar
Reddy L. J., Upadhyaya H.D., Gowda C.L.L., Singh S. 2005. Development of core collection in pigeonpea [Cajanus cajan (L.) Millspaugh] using geographic and qualitative morphological descriptors. Genetic Resources and Crop Evolution 52: 1049 — 1056.
Google Scholar
Reif J.C., Melchinger A.E., Frisch M. 2005. Genetical and mathematical properties of similarity and dissimilarity coefficients applied to plant breeding and seed bank management. Crop Sci. 45: 1 — 7.
Google Scholar
Robertson L.D., Singh K.B., Erskine W., Abd El Moneim A.M. 1996. Useful genetic diversity in germplasm collections of food and forage legumes from West Asia and North Africa. Genetic Resources and Crop Evolution 43: 447 — 460.
Google Scholar
Rodino A., Santalla M., Ro A.D., Singh S. 2003. A core collection of common bean from the Iberian peninsula. Euphytica 131: 165 — 175.
Google Scholar
Ronfort J., Bataillon T., Santoni S., Delalande M., David J.L., Prosperi J-M. 2006. Microsatellite diversity and broad scale geographic structure in a model legume: Building a set of nested core collection for studying naturally occurring variation in Medicago truncatula L. BMC Plant Biology 6: 28.
Google Scholar
Santos M., Dias J., 2004. Evaluation of a core collection of Brassica oleracea accessions for resistance to white rust of crucifers (Albugo candida) at the cotyledon stage. Genetic Resources and Crop Evolution 51: 713 — 722.
Google Scholar
Schmidt J. 2005 a. The European Lolium perenne core collection in the Botanical Garden of the Plant Breeding and Acclimatization Institute, Bydgoszcz, Poland. In: Boller B., Willner E., Maggioni L., Lipman E. Report of a Working Group on Forages. Eighth meeting, 10–12 April 2003, Linz, Austria. International Plant Genetic Resources Institute, Rome, Italy.
Google Scholar
Schmidt J. 2005b. Variation of European ecotypes of perennial rygrass (Lolium perenne L.) in Poland. Plant Breeding and Seed Science 51: 75 — 89.
Google Scholar
Schoen D.J., Brown A.H.D. 1993. Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proceedings of the National Academy of Sciences 90: 10623 — 10627.
Google Scholar
Skinner D.Z., Bauchan G.R., Auricht G., Hughes S. 1999. Developing a core collection from a large annual Medicago germplasm collection. W: Johnson, R.C., Hodgkin T. 1999. Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rzym, Włochy.
Google Scholar
Skroch P.W., Nienhuis J., Beebe S., Tohme J., PedrazaF. 1998. Comparison of Mexican common bean (Phaseolus vulgaris L.) core and reserve germplasm collections. Crop Sci. 38: 488 — 496.
Google Scholar
Spagnoletti Zeuli P.L., Qualset C.O. 1993. Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat. Theoretical and Applied Genetics 87: 295 — 304.
Google Scholar
Studnicki M., Mądry W., Kociuba W. 2010a. The efficiency and effectiveness of sampling strategies used to develop a core collection for the Polish spring triticale (×Triticosecale Wittm.) germplasm resources. Communications in Biometry and Crop Sci. 5:.127 — 135.
Google Scholar
Studnicki M., Mądry W., Kociuba W. 2010b. Efektywność metod pobierania próby w tworzeniu kolekcji podstawowej pszenżyta jarego przy użyciu danych fenotypowych. Zeszyty Problemowe Postępów Nauk Rolniczych 555: 409 — 418.
Google Scholar
Studnicki M., Mądry W., Śmiałowski T. 2009. Porównanie efektywności metod statystycznych tworzenia kolekcji podstawowej na przykładzie pszenicy jarej. Biuletyn IHAR 252:105 — 117.
Google Scholar
Thachuk C., Crossa J., Franco J., Dreisigacker S., Warburton M., Davenport G.F. 2009. Core Hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics 10: 243.
Google Scholar
Thompson S.K. 2002. Sampling. 2nd ed. John Wiley & Sons, New York, USA.
Google Scholar
Upadhyaya H.D. 2003. Phenotypic diversity in groundnut (Arachis hypogaea L.) core collection assessed by morphological and agronomical evaluations. Genetic Resources and Crop Evolution 50: 539 — 550.
Google Scholar
Upadhyaya H.D., Dwivedi S.L., Gowda C., Singh S. 2007b. Identification of diverse germplasm lines for agronomic traits in a chickpea (Cicer arietinum L.) core collection for use in crop improvement Field Crops Research 100: 320 — 326.
Google Scholar
Upadhyaya H.D., Bramel P.J., Ortiz R., Singh S. 2002. Developing a mini core of peanut for utilization of genetic resources. Crop Sci. 42: 2150 — 2156.
Google Scholar
Upadhyaya H. D., Dwivedi S. L., Nadaf H. L., Singh S. 2011 a. Phenotypic diversity and identification of wild Arachis accessions with useful agronomic and nutritional traits. Euphytica (wdruku).
Google Scholar
Upadhyaya H. D., Gowda C., Pundir R., Reddy V. G., Singh, S. 2006 b. Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits Genetic Resources and Crop Evolution. 53: 679 — 685.
Google Scholar
Upadhyaya H.D., Gowda C.L.L., Buhariwalla H.K., Crouch J.H. 2006 a. Efficient use of crop germplasm resources: identifying useful germplasm for crop improvement through core and mini-core collections and molecular marker approaches. Plant Genetic Resources: Characterization and Utilization 4: 25 — 35.
Google Scholar
Upadhyaya H.D., Ortiz R. 2001. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement Theoretical and Applied Genetics 102: 1292 — 1298.
Google Scholar
Upadhyaya H.D., Ortiz R., Bramel P.J., Singh S. 2003. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genetic Resources and Crop Evolution 50: 139 — 148.
Google Scholar
Upadhyaya H.D., Ravishankar C.R., Narasimhudu Y., Sarma N.D.R.K., Singh S.K., Varshney S.K., Reddy V.G., Singh S., Parzies H.K., Dwivedi S.L., Nadaf H.L., Sahrawat S., Gowda C.L.L. 2011b. Identification of trait-specific germplasm and developing a mini core collection for efficient use of foxtail millet genetic resources in crop improvement. Field Crops Research 124: 459 — 467.
Google Scholar
Upadhyaya H.D., Reddy K.N., Gowda C.L.L., Singh S. 2007a. Phenotypic diversity in the pigeonpea (Cajanus cajan L.) core collection. Genetic Resources and Crop Evolution 54: 1167 — 1184.
Google Scholar
Upadhyaya H.D., Reddy K.N., Gowda C.L.L., Singh S. 2011c. Development of pearl millet minicore collection for enhanced utilization of germplasm. Crop Sci. 51: 217 — 223.
Google Scholar
Upadhyaya H.D., Reddy L.J., Gowda C.L.L., Singh S. 2006. Identification of diverse groundnut germplasm: Sources of early maturity in a core collection. Field Crops Research 97: 261 — 271.
Google Scholar
Upadhyaya H.D., Sharma S., Ramulu B., Bhattacharjee R., Gowda C. L. L., Gopal R.V., Singh S. 2010. Variation for qualitative and quantitative traits and identification of trait-specific sources in new sorghum germplasm. Crop and Pasture Science 61: 609 — 618.
Google Scholar
van de Wouw M., Chris, K., van Hintum, T., van Treuren, R., Visser, B. 2010a. Genetic erosion in crops: concept, research results and challenges. Plant Genetic Resources: Characterization and Utilization 8: 1 — 15.
Google Scholar
van de Wouw M., van Hintum T., Kik C., van Treuren R., Visser B. 2010b. Genetic diversity trends in 20th century crop cultivars — a meta analysis. Theoretical and Applied Genetics 120: 1241 — 1252.
Google Scholar
van Hintum Th.J.L. 1999. The general methodology for creating a core collection. w: Johnson, R.C. and T. Hodgkin. 1999. Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy.
Google Scholar
van Hintum Th.J.L., Brown A.H.D., C. Spillane and T. Hodgkin. 2000. Core collections of plant genetic resources. IPGRI Technical Bulletin No. 3. International Plant Genetic Resources Institute, Rzym, Włochy.
Google Scholar
van Raamsdonk L., Wijnker J. 2000 The development of a new approach for establishing a core collection using multivariate analyses with tulip as case. Genetic Resources and Crop Evolution 47: 403 — 416.
Google Scholar
Vencovsky R., Crossa J. 1999. Variance effective population size under mixed self and random mating with applications to genetic conservation of species. Crop Sci. 39: 1282 — 1294.
Google Scholar
Vencovsky R., Crossa J. 2003. Measurements of representativeness used in genetic resources conservation and plant breeding. Crop Sci. 43: 6: 1912 — 1921.
Google Scholar
Wang J.C., Hu J., Huang X.X., Xu S.C. 2008. Assessment of different genetic distances in constructing cotton core subset by genotypic values. Journal of Zhejiang University — Science B 9:356 — 362
Google Scholar
Wang J.C., Hu J., Xu H. M.,Zhang S. 2007. A strategy on constructing core collections by least distance stepwise sampling. Theoretical and Applied Genetics 115: 1 — 8.
Google Scholar
Wang Y., Zhang J., Sun H., Ning N., Yang L. 2011. Construction and evaluation of a primary core collection of apricot germplasm in China. Scientia Horticulturae 128: 311 — 319.
Google Scholar
Ward J. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 38: 236–244.
Google Scholar
Weihai M., Jinxin Y., Sihachakr D. 2008. Development of core subset for the collection of Chinese cultivated eggplants using morphological-based passport data. Plant Genetic Resources: Characterization and Utilization 6: 33 — 40.
Google Scholar
Xiurong Z., Yingzhong Z., Yong C., Xiangyun F., Qingyuan G., Mingde Z.,Hodgkin T. 2000. Establishment of sesame germplasm core collection in China. Genetic Resources and Crop Evolution 47: 273 — 279.
Google Scholar
Xu H., Mei Y., Hu J., Zhu J., Gong P. 2006. Sampling a core collection of Island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits. Genetic Resources and Crop Evolution 53: 515 — 521.
Google Scholar
Xu Y. 2010. Molecular plant breeding. CAB International, Wallingford, UK.
Google Scholar
Yan W.G., Ruter J.N., Bryant R.J., Bockelman H.E., Fjellstrom R.G., Chen M.H., Tai T.H., McClung A.M. 2007. Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Sci. 47: 869 — 876.
Google Scholar
Zewdie Y., Tong N., Bosland P. 2004. Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions. Genetic Resources and Crop Evolution 51: 147 — 151.
Google Scholar
Zhang H., Zhang D., Wang M., Sun J., Qi Y., Li J., Wei X., Han L., Qiu Z., Tang S., Li Z. 2011. A core collection and mini core collection of Oryza sativa L. in China. Theoretical and Applied Genetics 122: 49 — 61.
Google Scholar
Authors
Marcin Studnickimarcin_studnicki@sggw.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland
Authors
Wiesław MądryKatedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland
Statistics
Abstract views: 37PDF downloads: 35
License
Copyright (c) 2012 Marcin Studnicki, Wiesław Mądry
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Wiesław Mądry, Dariusz Gozdowski, Jan Rozbicki, Mirosław Pojmaj, Stanisław Samborski, Grain yield formation strategies in advanced lines of winter triticale grown in different environments , Bulletin of Plant Breeding and Acclimatization Institute: No. 244 (2007): Regular issue
- Wiesław Mądry, Barbara Roszkowska-Mądra , The beauty and importance of old traditional orchards , Bulletin of Plant Breeding and Acclimatization Institute: No. 299 (2023): Regular issue
- Marcin Studnicki, Wiesław Mądry, Tadeusz Śmiałowski, Comparison of statistical methods to development of a core collection for a spring wheat collection , Bulletin of Plant Breeding and Acclimatization Institute: No. 252 (2009): Regular issue
- Wiesław Mądry, Adriana Derejko, Statistical methods for data analysis in the complete classification Cultivar × Crop Management × Location × Year (G×M×L×Y) from PVTS , Bulletin of Plant Breeding and Acclimatization Institute: No. 273 (2014): Regular issue
- Dariusz Gozdowski, Wiesław Mądry, Zdzisław Wyszyński, Maria Kalinowska-Zdun, Characteristics and empirical comparison of simple and complex path analysis in grain yield determination by yield - related traits. Part II. Example on spring barley , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Marcin Studnicki, Wiesław Mądry, Jan Schmidt, Multivariate analysis of genotypic diversity of agronomic traits in orchardgrass (Dactylis glomerata L.) germplasm collection , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue
- Tadeusz Drzazga, Marcin Studnicki, Evaluation of adaptability to environments of varieties in multiple annual trials: a case study of winter wheat , Bulletin of Plant Breeding and Acclimatization Institute: No. 275 (2015): Regular issue
- Wiesław Mądry, Marzena Iwańska, Usefulness of statistical methods and measures for evaluating cultivar stability and adaptation: an overview of research , Bulletin of Plant Breeding and Acclimatization Institute: No. 260/261 (2011): Regular issue
- Jakub Paderewski, Wiesław Mądry, Use of AMMI model in the analysis of cultivar responses to environments , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue
- Adriana Derejko, Wiesław Mądry, Overview of applications of statistical methods in the analysis of data from a series of experiments , Bulletin of Plant Breeding and Acclimatization Institute: No. 273 (2014): Regular issue