Quantitative measures of the cultivar wide adaptation degree and their using in preliminary yield trials for winter wheat
Wiesław Mądry
wieslaw_madry@sggw.ed.plKatedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)
Marzena Iwańska
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)
Abstract
In this paper three new concepts of cultivar’s wide adaptation degree in I, II and III sense, respectively were presented. It was recognized that cultivar’s wide adaptation degree in any considered sense can be measured using some statistical indices (measures) called quantitative measures of cultivar’s wide adaptation degree in I, II and III sense. To do this, adequate quantitative measures like superiority measure, Pi, Eskridge’s yield reliability measure, Ri and Eskridge’s yield reliability function, Ri(d) were selected. A hypothesis was formulated that the three measures of cultivar’s wide adaptation degree can evaluate consistently, in order sense, wide adaptation degree of the tested cultivars although it is described by each of them in a specific way. The hypothesis was tested using the data for grain yield of winter wheat from 15 of preliminary yield trials carried out across the years 1993–2007. As a result of the empirical studies good agreements were proved (high Spearman rank correlation coefficients) between each of pairs of quantitative measures of cultivar’s wide adaptation degree in I, II and III sense within all sets of cultivars. Then, one may conclude that in evaluating wheat cultivar’s wide adaptation degree only one of the considered measures could be sufficient. The conducted studies, as based on winter wheat grain yield data delivered new results regarding the investigated crop species. However, the conclusions also deliver important primary viewing on usefulness of the measures for evaluating adaptation degree of cultivars in other crops.
Keywords:
concepts of cultivar’s wide adaptation degree, grain yield, preliminary yield trials, winter wheat, quantitative measures of the degree of cultivar wide adaptationReferences
Annicchiarico P. 2002 a. Defining adaptation strategies and yield stability targets in breeding programmes. In: Kang M.S. (Ed.) Quantitative genetics, genomics and plant breed. CABI, Wallingford, UK: 165–183.
Google Scholar
Annicchiarico P. 2002 b. Genotype- environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174. Food and Agriculture Organization, Rome.
Google Scholar
Basford K. E., Cooper M. 1998. Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia. Austr. J. Agric. Res. 49: 153 — 174
Google Scholar
Blanche S. B., Utomo H. S., Wenefrida I., Myers G. O. 2009. Genotype x environment interactions of hybrid and varietal rice cultivars for grain yield and milling quality. Crop Sci. 49: 2011 — 2018
Google Scholar
Braun H. J., Ekiz H,, Eser V., Keser M., 1998. Breeding priorities of winter wheat programs. In: Braun HJ, Altay F, Kronstad WE, Beniwal SPS, McNab A et al (eds) Wheat: prospects for global improvement. Kluwer, Dordrecht: 553 — 560.
Google Scholar
Braun H.J., Rajaram S., van Ginkel M. 1996. CIMMYT's approach to breeding for wide adaptation. Euphytica 92: 175 — 183
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1997. A multivariate approach to analysing genotype-environment interactions. W: Krajewski P., Kaczmarek Z (Eds), Advances in Biometrical Genetics, Poznań: 3 — 14.
Google Scholar
Cooper M. 1999. Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crops Res. 64: 13 — 34.
Google Scholar
Cooper M., Byth D. E. 1996. Understanding plant adaptation to achieve systematic applied crop improvement — a fundamental challenge. In: Cooper M., Hammer G.L. (Eds.), Plant Adaptation, Crop Improvement. CAB International/International Rice Research Institute (IRRI)/International Crops Research Institute for Semi Arid Tropics (CRISAT), Wallingford, UK/Los Banos, Laguna, Philippines/Hyderabad, India: 5–24.
Google Scholar
Eskridge K. M. 1990. Selection of stable cultivars using a safety — first rule. Crop Sci. 30: 369 — 374.
Google Scholar
Eskridge K. M. Johnson B. E. 1991. Expected utility maximization and selection of stable plant cultivars. Theor. Appl. Genet. 81: 825 — 832.
Google Scholar
Eskridge K. M., Byrne P. F., Crossa J. 1991. Selection of stable varieties by minimizing the probability of disaster. Field Crops Res. 27:169 — 181.
Google Scholar
Eskridge K.M., Mumm R.F. 1992. Choosing plant cultivars based on the probability of outperforming a check. Theor. Appl. Genet. 84: 494 — 500.
Google Scholar
Eskridge K. M., Smith O. S., Byrne P. F. 1993. Comparing test cultivars using reliability functions of test — check differences from on — farm trials. Theor. Appl. Genet. 87: 60 — 64.
Google Scholar
Fox P. N., Skovmand B., Thompson B.K., Braun H.J., Cormier R. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57 — 64.
Google Scholar
Gauch H. G., Piepho H. P., Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48:866 — 889.
Google Scholar
Gauch H.G., Zobel R.W. 1997. Identifying mega — environments and targeting genotypes. Crop Sci. 37:311 — 326.
Google Scholar
Herring M. R., O'Brien L. 2000. A regional adaptation analysis of oats in New South Wales and southern Queensland for grain yield and dry matter production. Austr. J. Agric. Res. 51: 961 — 970
Google Scholar
Iwańska M., Mądry W., Drzazga T., Rajfura A. 2008. Zastosowanie miar statystycznych do oceny stopnia szerokiej adaptacji odmian pszenicy ozimej na podstawie serii doświadczeń przedrejestrowych. Biul. IHAR 250: 67 — 86.
Google Scholar
Joshi K.D., Musa A.M., Johansen C., Gyawali S., Harris D., Witcombe J.R. 2007b. Highly client — oriented breeding, using local preferences and selection, produces widely adapted rice varieties. Field Crops Res. 100: 107 — 116.
Google Scholar
Kang M. S. 1998. Using genotype — by environment interaction for crop cultivar development. Adv. Agron. 62: 199 — 253.
Google Scholar
Kaut A. H. E. E., Mason H. E., Navabi A., O'Donovan J. T., Spaner D. 2009. Performance and stability of performance of spring wheat variety mixtures in organic and conventional management systems in western Canada. J. Agric. Sci. 147: 141–153.
Google Scholar
Krajewski P., Kaczmarek Z., Czajka S. 2006. EKSPLAN wersja 2. Planowanie i analiza statystyczna doświadczeń hodowlanych. Instytut Genetyki Roślin PAN, Poznań.
Google Scholar
Lin C. S., Binns M. R. 1988. A superiority measure of cultivar performance for cultivar x location data. Can. J. Plant Sci. 68: 193 — 198.
Google Scholar
Mądry W. 2002. Skuteczność kryterium YS Kanga, opartego na średniej i stabilności plonu w wyborze genotypów zbóż o szerokiej adaptacji w rejonie uprawnym. Roczn. Nauk Roln. Seria A. 116:11 — 24.
Google Scholar
Mądry W. 2003. Analiza statystyczna miar stabilności na podstawie danych w klasyfikacji genotypy × środowiska. Część II. Model mieszany Shukli i model regresji łącznej. Coll. Biom. 33: 207 — 220.
Google Scholar
Patterson H. D., Wiliams E. R. 1976. A new class of resolvable block design. Biometrika 63: 83 — 92.
Google Scholar
Piepho H. P. 1995. Assessing cultivar adaptability by multiple comparison with the best. Agron. J. 87:1225 — 1227.
Google Scholar
Piepho H. P. 1998. Methods for comparing the yield stability of cropping systems — A review. J. Agron. Crop Sci. 180:193 — 213.
Google Scholar
Pilarczyk W. 1988. Planowanie i analiza doświadczeń — teoria i praktyka. Wiadomości Odmianoznawcze 2/39.
Google Scholar
Rajfura A., Mądry W., 2001. Metoda wyboru genotypów o szerokiej adaptacji wykorzystująca zarówno ich średnie w rejonie jak i stabilność plonowania. Coll. Biom.: 169–182.
Google Scholar
Scapim C. A., Pacheco C. A., Amaral A. T., Vieira R. A., Pinto R. J., Conrado T. V. 2010. Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica 174:209 — 218.
Google Scholar
Shukla G. K. 1972. Some aspects of partitioning genotype -environmental components of variability. Heredity 28: 237 — 245.
Google Scholar
St -Pierre C. A., Klinck H. R., Gauthier F. M. 1967. Early generation selection under different environments as it influences adaptation of barley. Can. J. Plant Sci. 47: 507 — 517.
Google Scholar
Yan W., Kang M. S. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. Boca Raton, FL, CRC Press.
Google Scholar
Authors
Wiesław Mądrywieslaw_madry@sggw.ed.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland
Authors
Marzena IwańskaKatedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland
Statistics
Abstract views: 55PDF downloads: 46
License
Copyright (c) 2011 Wiesław Mądry, Marzena Iwańska
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Wiesław Mądry, Dariusz Gozdowski, Jan Rozbicki, Mirosław Pojmaj, Stanisław Samborski, Grain yield formation strategies in advanced lines of winter triticale grown in different environments , Bulletin of Plant Breeding and Acclimatization Institute: No. 244 (2007): Regular issue
- Marcin Studnicki, Wiesław Mądry, Tadeusz Śmiałowski, Comparison of statistical methods to development of a core collection for a spring wheat collection , Bulletin of Plant Breeding and Acclimatization Institute: No. 252 (2009): Regular issue
- Wiesław Mądry, Barbara Roszkowska-Mądra , The beauty and importance of old traditional orchards , Bulletin of Plant Breeding and Acclimatization Institute: No. 299 (2023): Regular issue
- Wiesław Mądry, Adriana Derejko, Statistical methods for data analysis in the complete classification Cultivar × Crop Management × Location × Year (G×M×L×Y) from PVTS , Bulletin of Plant Breeding and Acclimatization Institute: No. 273 (2014): Regular issue
- Tadeusz Oleksiak, Dagmara Bronisz, Dariusz R. Mańkowski, Marzena Iwańska, Analysis of yielding stability and wide adaptation degree of selected winter triticale (× Triticosecale Witt.) cultivars based on field production data , Bulletin of Plant Breeding and Acclimatization Institute: No. 282 (2017): Regular issue
- Dariusz Gozdowski, Wiesław Mądry, Zdzisław Wyszyński, Maria Kalinowska-Zdun, Characteristics and empirical comparison of simple and complex path analysis in grain yield determination by yield - related traits. Part II. Example on spring barley , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Marcin Studnicki, Wiesław Mądry, Jan Schmidt, Multivariate analysis of genotypic diversity of agronomic traits in orchardgrass (Dactylis glomerata L.) germplasm collection , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue
- Wiesław Mądry, Marzena Iwańska, Usefulness of statistical methods and measures for evaluating cultivar stability and adaptation: an overview of research , Bulletin of Plant Breeding and Acclimatization Institute: No. 260/261 (2011): Regular issue
- Jakub Paderewski, Wiesław Mądry, Use of AMMI model in the analysis of cultivar responses to environments , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue
- Adriana Derejko, Wiesław Mądry, Overview of applications of statistical methods in the analysis of data from a series of experiments , Bulletin of Plant Breeding and Acclimatization Institute: No. 273 (2014): Regular issue