Introductory study on application of digital image analysis and discriminant function analysis in assessment of malting quality of spring barley cultivars

Dariusz R. Mańkowski

d.mankowski@ihar.edu.pl
Pracownia Ekonomiki Nasiennictwa i Hodowli Roślin, Zakład Nasiennictwa i Nasionoznawstwa, Instytut Hodowli i Aklimatyzacji Roślin — Radzików (Poland)
https://orcid.org/0000-0002-7499-8016

Witold Kozirok


Katedra Przetwórstwa i Chemii Surowców Roślinnych, Wydział Nauki o Żywności, Uniwersytet Warmińsko-Mazurski — Olsztyn (Poland)

Monika Janaszek


Zakład Mechaniki i Techniki Cieplnej, Katedra Podstaw Inżynierii, Wydział Inżynierii Produkcji, Szkoła Główna Gospodarstwa Wiejskiego — Warszawa (Poland)
https://orcid.org/0000-0003-0855-9098

Abstract

Barley grain is the main source for production of malt. Varietal purity is essential for production of good quality malt. Each malting barley cultivar has a description of characters prepared on the basis of micromalting tests conducted according to the criteria of the European Brewing Convention (EBC). Before sending barley grain of a certain cultivar to a brewery, both the efficiency and quality of malt are to be evaluated. Quality of a cultivar is assessed according to the Q index where Q value below 5 specifies feed cultivars and Q value near 9 specifies very good malting cultivars. Hitherto malting barley quality assessment has been conducted using laboratory methods. Digital image analysis might facilitate the barley quality assessment procedure and reduce its costs. Discriminant analysis and digital image analysis were used in classification of grain of 11 spring barley cultivars to the quality groups. Discriminant analysis was based on morphological features and color features characteristic for RGB color space. Discriminant analysis was conducted using SAS 9.1. Successive steps of the analysis and procedures syntax in the 4GL programming language have been presented.


Keywords:

digital image analysis, discriminant function analysis, malting quality, RGB model, SAS, spring barley

Błażewicz J., Liszewski M. 2003. Ziarno jęczmienia nagiego odmiany ‘Rastik’ jako surowiec do produkcji słodów typu pilzneńskiego. Acta Scientiarum Polonorum, Technologia Alimentaria, 2 (1): 63 — 74.
Google Scholar

Drzewiecki J., Fornal Ł., Filipowicz A., Konopka S. 2000. Comparison of computer image analysis and urea soluble proteins electrophoresis for the identification of malting barley varieties. Plant Varieties and Seeds, 13: 159 — 171.
Google Scholar

Fisher R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7: 179 — 188. DOI: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Google Scholar

Hand D. J. 1981. Discrimination and classification. New York, John Wiley & Sons Inc.
Google Scholar

Hebisz T. 2003. Multimedia i grafika komputerowa. Modele barw. Łódź, Instytut Sterowania i Systemów Informatycznych.
Google Scholar

Huberty C. J. 1975. Discriminant analysis. Review of Educational Research, 45: 543 — 598. DOI: https://doi.org/10.3102/00346543045004543
Google Scholar

Jaynes D. B., Kaspar T. C., Colvin T. S., James D. E. 2003. Cluster analysis of spatiotemporal corn yield in an Iowa field. Agron. J. 95: 574 — 586. DOI: https://doi.org/10.2134/agronj2003.5740
Google Scholar

Jennrich R. I. 1977. Stepwise discriminant analysis. In: Statistical methods for digital computers. Enslein K., Ralston A., Wilf H. (eds.). New York, John Wiley & Sons Inc.
Google Scholar

Khattre R., Naik D. N. 2000. Multivariete data reduction and discrimination with SAS software. SAS Publishing INC., John Wiley & Sons Inc., New York, USA.
Google Scholar

Klecka W. R. 1980. Discriminant analysis. Sage University Papers Series on Quantitative Applications in the Social Sciences: 07—019, Beverly Hills, CA: Sage Publications.
Google Scholar

Kozirok W. 2005. Badania nad zastosowaniem cyfrowej analizy obrazu w ocenie jakości ziarna jęczmienia browarnego. Praca Doktorska. Uniwersytet Warmińsko-Mazurski w Olsztynie.
Google Scholar

Krzyśko M. 1990. Analiza dyskryminacyjna. Wydawnictwa Naukowo-Techniczne, Warszawa.
Google Scholar

Lewis M. J., Young T. W. 2001. Piwowarstwo. Warszawa, PWN.
Google Scholar

Lista Odmian Roślin Rolniczych 2001. COBORU, Słupia Wielka.
Google Scholar

Majewska K. M. 2004. Badania wyróżników jakości technologicznej ziarna pszenicy w aspekcie jego cech geometrycznych. Rozprawy i monografie. Wydawnictwo UWM, Olsztyn.
Google Scholar

Majumdar S., Jayas D. S. 2000 a. Classification of cereal grains using machine vision: I. Morphology models. ASAE. vol. 43(6): 1669 — 1675. DOI: https://doi.org/10.13031/2013.3107
Google Scholar

Majumdar S., Jayas D. S. 2000 b. Classification of cereal grains using machine vision: II. Color models. ASAE. vol. 43(6): 1677 — 1680. DOI: https://doi.org/10.13031/2013.3067
Google Scholar

Majumdar S., Jayas D. S. 2000 c. Classification of cereal grains using machine vision: IV. Combined morphology, color and texture models. ASAE. vol. 43(6): 1689 — 1694. DOI: https://doi.org/10.13031/2013.3069
Google Scholar

McElroy J. S., Walter R. H., Santen van E. 2002. Patterns of variation in Poa annua populations as revealed by canonical discriminant analysis of life history trials. Crop Sci., 42: 513 — 517. DOI: https://doi.org/10.2135/cropsci2002.5130
Google Scholar

Mielicki J. 1997. Zarys wiadomości o barwie. Łódź, Fundacja rozwoju polskiej kolorystyki.
Google Scholar

Molina-Cano J. L. 1987. The EBC barley and malt committee index for the evaluation of malting quality in barley and its use in breeding. Plant Breeding, 98: 249 — 256. DOI: https://doi.org/10.1111/j.1439-0523.1987.tb01124.x
Google Scholar

O’Rourke N., Hatcher L., Stepanski E. J. 2005. A step-by step approach to using SAS for univariate and multivariate statistics. 2nd Edition. SAS Publishing Inc., Jon Wiley & Sons Inc., New York, USA.
Google Scholar

Osowski S. 1996. Sieci neuronowe w ujęciu algorytmicznym. Wydawnictwa Naukowo-Techniczne, Warszawa.
Google Scholar

Osowski S. 2002. Sieci neuronowe typu SVM w zastosowaniu do klasyfikacji wzorców. Przegląd Elektrotechniczny, 78(2): 29 — 36.
Google Scholar

Pastuszak W. 2000. Barwa w grafice komputerowej. Warszawa, PWN.
Google Scholar

Pillai K. C. S. 1985. Multivariate analysis of variance (MANOVA). ESS, 6: 20 — 29.
Google Scholar

Rao C. R. 1973. Linear statistical inference and its applications. New York, John Wiley & Sons Inc. DOI: https://doi.org/10.1002/9780470316436
Google Scholar

SAS Institute, Inc., 2004 a. BASE SAS 9.1.3 Procedures Guide. SAS Publishing, SAS Institute Inc., Cary, NC, USA.
Google Scholar

SAS Institute, Inc., 2004 b. SAS 9.1 Companion for Windows. SAS Publishing, SAS Institute Inc., Cary, NC, USA.
Google Scholar

SAS Institute, Inc., 2004 c. SAS/STAT 9.1 User’s Guide. SAS Publishing, SAS Institute Inc., Cary, NC, USA.
Google Scholar

Shapiro S. S., Wilk M. B. 1965. An analysis of variance test of normality (complete samples). Biometrika, 52: 591 — 611. DOI: https://doi.org/10.1093/biomet/52.3-4.591
Google Scholar

Trajer J., Sałat R. 2005. Sztuczne sieci neuronowe w klasyfikacji warzyw i identyfikacji ich cech. W: Trajer J., Jaros M. (red.). Zastosowanie metod sztucznej inteligencji do oceny zmian jakości wybranych warzyw w procesach ich suszenia i przechowywania. Wydawn. SGGW, Warszawa: 37 — 54.
Google Scholar

Vaylay R., Santen van E. 2002. Application of canonical discriminant analysis for the assessment of genetic variation in tall fescue. Crop Sci. 42: 534 — 539. DOI: https://doi.org/10.2135/cropsci2002.5340
Google Scholar

Weber R., Zalewski D. 2004. Plonowanie odmian pszenicy ozimej w zróżnicowanych środowiskach. Biuletyn IHAR, 233: 17 — 28.
Google Scholar

Zieliński K. W., Strzelecki M. 2002. Komputerowa analiza obrazu biomedycznego: wstęp do morfometrii i patologii ilościowej. Warszawa, PWN.
Google Scholar

Strony internetowe:
Google Scholar

Projekt Eurequa; weryfikacja: 2005 — http://www.eurequa.pl/
Google Scholar

Teoria postrzegania barw; weryfikacja: 2005 — http://semmix.pl/color/models/mo112.htm.
Google Scholar


Published
2005-12-30

Cited by

Mańkowski, D. R., Kozirok, W. and Janaszek, M. (2005) “Introductory study on application of digital image analysis and discriminant function analysis in assessment of malting quality of spring barley cultivars”, Bulletin of Plant Breeding and Acclimatization Institute, (237/238), pp. 51–66. doi: 10.37317/biul-2005-0006.

Authors

Dariusz R. Mańkowski 
d.mankowski@ihar.edu.pl
Pracownia Ekonomiki Nasiennictwa i Hodowli Roślin, Zakład Nasiennictwa i Nasionoznawstwa, Instytut Hodowli i Aklimatyzacji Roślin — Radzików Poland
https://orcid.org/0000-0002-7499-8016

Authors

Witold Kozirok 

Katedra Przetwórstwa i Chemii Surowców Roślinnych, Wydział Nauki o Żywności, Uniwersytet Warmińsko-Mazurski — Olsztyn Poland

Authors

Monika Janaszek 

Zakład Mechaniki i Techniki Cieplnej, Katedra Podstaw Inżynierii, Wydział Inżynierii Produkcji, Szkoła Główna Gospodarstwa Wiejskiego — Warszawa Poland
https://orcid.org/0000-0003-0855-9098

Statistics

Abstract views: 22
PDF downloads: 7


License

Copyright (c) 2005 Dariusz R. Mańkowski, Witold Kozirok, Monika Janaszek

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 3 > >>