The impact of powdery mildew on cereals and grasses on wheat crops in the context of climate change
Aleksandra Pietrusińska
a.pietrusinska@ihar.edu.plPlant Breeding and Acclimatization Institute – National Research Institute, Radzików (Poland)
https://orcid.org/0000-0001-6089-7030
Monika Żurek
Plant Breeding and Acclimatization Institute – National Research Institute, Radzików (Poland)
https://orcid.org/0000-0002-4597-7734
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal in the world. Because of wheat's substantial role in the global food system, changes in its production volume, quality and availability could have a significant impact on global food security. The amount of global wheat production and the quality of wheat yields are strongly influenced by climate change, which has resulted in a decrease in grain acreage and availability of potable water, with a concomitant decrease in the profitability of agricultural production.
The observed increase in temperature and air humidity affects the occurrence and development in wheat crops of powdery mildew of cereals and grasses (Blumeria graminis f.sp. tritici). This disease, occurs every year, in varying degrees of severity, causing yield losses of up to 20-40%. The migration of powdery mildew of cereals and grasses northward, into a cooler and wetter climate zone is also associated with climate change.
In counteracting adverse climate change on agricultural production, mathematical modeling plays an important role, becoming a key tool used to forecast stable crop production. In addition, an important direction of research involving countering the negative effects of climate change on crop production is the sustainable use of genetic resources. Expanding the genetic base in the era of a changing climate is an important aspect of today's resistance breeding.
This publication presents reports on the impact of climate change on powdery mildew of cereals and grasses, forecasting risks using mathematical models, as well as highlighting the importance of plant genetic resources in countering the negative effects of climate change.
Słowa kluczowe: Blumeria graminis, mączniak prawdziwy zbóż i traw, modelowanie matematyczne, zasoby genetyczne, zmiany klimatu
Supporting Agencies
Keywords:
climate change, fungal diseases, genetic resources, gene bank, Triticum aestivum L., wheatReferences
Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, B.D., Cammarano, D., Kimball, B.A., Ottman, M.J., Wall, G.W., White, J.W., Reynolds, M.P., Alderman, P.D., Prasad, P.V.V., Aggarwal, P.K., Anothai, J., Basso, B., Biernath, C., Challinor, A.J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones, D.C., Kersebaum, K.C., Koehler, A.K., Müller, C., Kumar, S.N., Nendel, C., O’Leary, G., Olesen, J.E., Palosuo, T., Priesack, E., Rezaei, E.E., Ruane, A.C., Semenov, M.A., Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P.J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., Zhu, Y., 2015. Rising temperature reduces global wheat production. Nat. Clim. Change 5, 143–147.
DOI: https://doi.org/10.1038/nclimate2470
Google Scholar
Asseng, S., Martre, P., Maiorano, A., Rötter, R.P., O’Leary, G.J., Fitzgerald, G.J., Girousse, C., Motzo, R., Giunta F., Babar, M.A., Reynolds, M.P., Kheir, A.M.S., Thorburn, P.J., Waha, K., Ruane, A.C., Aggarwal, P.K., Ahmed, M., Balkovič, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., Challinor, A.J., De Sanctis, G., Dumont, B., Rezaei, E.E., Fereres, E., Ferrise, R., Garcia-Vila, M., Gayler, S., Gao, Y. Horan, H., Hoogenboom, G., Izaurralde, R.C., Jabloun, M., Jones, C.D., Kassie, B.T., Kersebaum, K., Klein, C., Koehler, A., Liu, B., Minoli, S., Martin, M.M.S., Mülle,r C., Kumar, S.N., Nendel, C., Olesen, J.E., Palosuo, T., Porter, J.R., Priesack, E., Ripoche, D., Semenov, M.A., Stöckle ,C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., van der Velde, M., Wallach, D., Wang, E., Webber, H., Wolf, J., Xiao, L., Zhang, Z., Zhao, Z., Zhu, Y., Ewert, F., 2018. Climate change impact and adaptation for wheat protein. Global Change Biol. 25, 155–173. https://doi.org/10.1111/gcb.14481
DOI: https://doi.org/10.1111/gcb.14481
Google Scholar
Balvanera, P., Sterer, P.F., Buchmann, A.B., He, N., Nakashizuka, J.S., Raffaelli, T., Schmid, B., 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x
DOI: https://doi.org/10.1111/j.1461-0248.2006.00963.x
Google Scholar
Bennett, F.G.A., 1984. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmers. Plant Pathol. 33, 279–300.
DOI: https://doi.org/10.1111/j.1365-3059.1984.tb01324.x
Google Scholar
Cammarano, D., Rötter, R.P., Asseng, S., Ewert, F., Wallach, D., Martre, P., Hatfield, J.L., Jones, J.W., Rosenzweig, C., Ruane, A.C., Boote, K.J., Thorburn, P.J., Kersebaum, K.C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Heng, L., Hooke,r J.E., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Müller, C., Kumar, S.N., Nendel C., O’Leary G., Olesen J.E., Osborne T.M., Priesack E., Ripoche D., Steduto P., Stöckle C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J.W., Wolf, J.,2016. Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crop Research 198, 80–92. https://doi.org/10.1016/j.fcr.2016.08.015
DOI: https://doi.org/10.1016/j.fcr.2016.08.015
Google Scholar
Caubel, J., Launay, M., Lannou, C., Brisson, N., 2012. Generic response functions to simulate climate-based processes in models for the development of airborne fungal crop pathogens. Ecol. Modell. 242, 92–104. https://doi.org/10.1016/j.ecolmodel.2012.05.012
DOI: https://doi.org/10.1016/j.ecolmodel.2012.05.012
Google Scholar
Chen, J., Arsenault, R., Brissette, F. P., Zhang, S., 2021. Climate change impact studies: Should we bias correct climate model outputs or post-process impact model outputs? Water Resources Research, 57, e2020WR028638. https://doi.org/10.1029/2020WR028638
DOI: https://doi.org/10.1029/2020WR028638
Google Scholar
Chenu, K., Porter, J.R., Martre, P., Basso, B., Chapman, S.C., Ewert, F., Bindi, M., Asseng, S., 2017. Contribution of crop models to adaptation in wheat. Trends Plant Sci. 22, 472–490. https://doi.org/10.1016/j.tplants.2017.02.003
DOI: https://doi.org/10.1016/j.tplants.2017.02.003
Google Scholar
Elahi, I., Saeed, U., Wadood, A., Abbas, A., Nawaz, H., Jabbar, S., 2022. Effect of climate change on wheat productivity. IntechOpen. https://doi.org/10.5772/intechopen.1037 [dostęp 17.04.2022]
DOI: https://doi.org/10.5772/intechopen.103780
Google Scholar
Faber, A., Jarosz, Z., Król, A., 2019. Wpływ zmian klimatu na efektywność wykorzystywania azotu oraz jego straty. Zeszyty Naukowe SGGW W Warszawie - Problemy Rolnictwa Światowego, 19(1): 37–46. https://doi.org/10.22630/PRS.2019.19.1.3
DOI: https://doi.org/10.22630/PRS.2019.19.1.3
Google Scholar
Farooq, A., Farooq, N., Akbar, H., Hassan Z.U., Gheewala, S.H., 2023. A critical review of climate change impact at a global scale on cereal crop production. Agronomy, 13:162. https://doi.org/10.3390/agronomy13010162
DOI: https://doi.org/10.3390/agronomy13010162
Google Scholar
Fuhrer, J., 2006. Agricultural systems: sensitivity to climate change. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1, article number 052. https://doi.org/10.1079/PAVSNNR20061052
DOI: https://doi.org/10.1079/PAVSNNR20061052
Google Scholar
Griffey, C.A., Das, M.K., Stromberg, E.L., 1993. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis. 77(6), 618–622.
DOI: https://doi.org/10.1094/PD-77-0618
Google Scholar
Hajjar, R., Hodgkin, T., 2007. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156: 1–13. https://doi.org/10.1007/s10681-007-9363-0
DOI: https://doi.org/10.1007/s10681-007-9363-0
Google Scholar
Hellin, J., Shiferaw, B., Cairns, J., Reynolds, M.,Ortiz-Monasterio, I., Banziger, M., Sonder, K., Rovere, R., 2012. Climate change and food security in the developing world: Potential of maize and wheat research to expand options for adaptation and mitigation. J. Dev. Agric. Econ. 4(12), 311–321.
Google Scholar
Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J.M., Skovmand, B., Taba, S., Warburton M., 1999. Plant genetic resources: what can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences of the United States of America 96(11): 5937–5943. https://doi.org/10.1073/pnas.96.11.59
DOI: https://doi.org/10.1073/pnas.96.11.5937
Google Scholar
Jarvis, A., Lane, A., Hijmans, R., 2008 The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126: 13–23. https://doi.org/10.1016/j.agee.2008.01.013
DOI: https://doi.org/10.1016/j.agee.2008.01.013
Google Scholar
Ju, Z., Hu, C., Zhang, Y., Chen, S., 2010. Effects of temperature rising on soil hydrothermal properties, winter wheat growth and yield. 9th European IFSA Symposium; 4–7 July 2010; Vienna, Austria. 2010. pp. 1307–1316.
Google Scholar
Juroszek, P., Tiedemann, A., 2013. Climate change and potential future risks through wheat diseases: A review. Eur. J. Plant Pathol. 136, 21–33. https://doi.org/10.1007/s10658-012-0144-9
DOI: https://doi.org/10.1007/s10658-012-0144-9
Google Scholar
Kahiluoto, H., Kaseva, J., Balek, J., Olesen, J.E., Ruiz-Ramos, M., Gobin, A., Kersebaum, K.C., Takáč, J., Ruget, F., Ferrise, R., Bezak, P., Capellades, G., Dibari, C., Mäkinen, H., Nendel, C., Ventrella, D., Rodríguez, A., Bindi, M., Trnka, M., 2019. Decline in climate resilience of European wheat Proc Natl Aca. Sci USA 116: 123–128. https://doi.org/10.1073/pnas.1804387115
DOI: https://doi.org/10.1073/pnas.1804387115
Google Scholar
Kocmánková, E., Trnká, M., Juroch, J., Dubrovský, M., Semerádová, D., Možný, M., Žalud, Z., 2009. Impact of climate change on the occurrence and activity of harmful organisms. Plant Prot. Sci. 45, 48–52.
DOI: https://doi.org/10.17221/2835-PPS
Google Scholar
Lackermann, K.V., Conley, S.P., Gaska, J.M., Martinka, M.J., Esker, P.D., 2011. Effect of location, cultivar, and diseases on grain yield of soft red winter wheat in Wisconsin. Plant Dis. 95, 1401–1406.https://doi.org/10.1094/PDIS-01-11-0005
DOI: https://doi.org/10.1094/PDIS-01-11-0005
Google Scholar
Lal, M., Singh, K.K., Rathore, L.S., Srinivasan, G., Saseendran, S.A., 1998. Vulnerability of rice and wheat yields in NW India to future changes in climate. Agri. For Meteorol. 89, 101–114.https://doi.org/10.1016/S0168-1923(97)00064-6
DOI: https://doi.org/10.1016/S0168-1923(97)00064-6
Google Scholar
Lione, G., Giordano, L., Sillo, F., Gonthier, P., 2015. Testing and modelling the effects of climate on the incidence of the emergent nut rot agent of chestnut Gnomoniopsis castanea. Plant Pathol. 64: 852–863. https://doi.org/10.1111/ppa.12319
DOI: https://doi.org/10.1111/ppa.12319
Google Scholar
Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D.B., Martre, P., Ruane, A.C., Wallach, D., Jones, J.W., Rosenzweig, C., Aggarwal, P.K., Alderman, P.D., Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A., Deryng, D., De Sanctis, G., Doltra, J., Fereres, E., Folberth, C., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones, C.D., Kersebaum, K.C., Kimball, B.A., Koehler, A.K., Kumar, S.N., Nendel, C., O’Leary, G., Olesen, J.E., Ottman, M.J., Palosuo, T., Prasad, P.V.V., Priesack, E., Pugh, T.A.M., Reynolds, M., Rezaei, E.E., Rötter, R.P., Schmid, E., Semenov, M.A., Shcherbak, I., Stehfest, E., Stöckle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P., Waha, K., Wall, G.W., Wang, E., White, J.W., Wolf, J., Zhao, Z., Zhu, Y., 2016. Similar negative impacts of temperature on global wheat yield estimated by three independent methods. Nat. Clim. Change 6, 1130–1136. https://doi.org/10.1038/nclimate3115
DOI: https://doi.org/10.1038/nclimate3115
Google Scholar
Liu, B., Martre, P., Ewert, F., Porter, J.R., Challinor, A.J., Mueller, C., Ruane, A.C., Waha, K., Thorburn, P.J., Aggarwal, P.K., Ahmed, M., Balkovič, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., De Sanctis, G., Dumont, B., Espadafor, M., Rezaei, E.E., Ferrise, R., Garcia‐Vila, M., Gayler, S., Gao, Y., Horan, H., Hoogenboom, G., Izaurralde, R.C., Jones, C.D., Kassie, B.T., Kersebaum, K.C., Klein, C., Koehler, A.K., Maiorano, A., Minoli, S., San Martin, M.M., Montesino, M., Kumar, S.N., Nendel, C., O’Leary, G.J., Palosuo, T., Priesack, E., Ripoche, D., Rötter, R.P., Semenov, M.A., Stöckle, C., Streck, T., Supi,t I., Tao, F., Van der Velde, M., Wallach, D., Wang, E., Webber, H., Wolf, J., Xiao, L., Zhang, Z., Zhao, Z., Zhu, Y., Asseng, S., 2019. Global wheat production with 1.5 and 2.0 degrees C above pre-industrial warming. Global Change Biol. 25, 1428–1444. https://doi.org/10.1111/gcb.14542
DOI: https://doi.org/10.1111/gcb.14542
Google Scholar
Matić, S., Cucu, M.A., Garibaldi, A., Gullino, M.L., 2018. Combined effect of CO2 and temperature on wheat powdery mildew. Plant Pathol. J. 34, 316–326. https://doi.org/10.5423/PPJ.OA.11.2017.0226
DOI: https://doi.org/10.5423/PPJ.OA.11.2017.0226
Google Scholar
Maxted, N., Kell, S., 2003. Biodiversity and conservation. Plant Diversity, conservation and use. Encyclopedia of Applied Plant Sciences, Elsevier, 25–48. https://doi.org/10.1016/B0-12-227050-9/00001-6
DOI: https://doi.org/10.1016/B0-12-227050-9/00001-6
Google Scholar
Mereu, V., Gallo, A., Trabucco, A., Gianluca, T., Carboni, G., Spano, D., 2021. Modeling high-resolution climate change impacts on wheat and maize in Italy. Clim. Risk Manag. 33: 100339. https://doi.org/10.1016/j.crm.2021.100339
DOI: https://doi.org/10.1016/j.crm.2021.100339
Google Scholar
Miedaner, T., Juroszek, P., 2021. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor. Appl. Genet. 134, 1771–1785.https://doi.org/10.1007/s00122-021-03807-0
DOI: https://doi.org/10.1007/s00122-021-03807-0
Google Scholar
Ottman, M.J., Kimball, B.A., White, J.W., Wall, G.W., 2012. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron J., 104:7–16.
DOI: https://doi.org/10.2134/agronj2011.0212
Google Scholar
Rosenzweig, C., Iglesias, A., Yang, X.B., Epstein, P., Chivian, E., 2011. Climate change and extreme weather events: implications for food production, plant disease, and pests. Global Change and Human Health 2, 90–104. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1023&context=nasapub
DOI: https://doi.org/10.1023/A:1015086831467
Google Scholar
Savary, S., Nelson, A., Sparks, A.H., Willocquet, L., Duveiller, E., Mahuku, G., Forbes, G., Garrett, K.A., Hodson, D., Padgham, J., Pande, S., Sharma, M., Yuen, J., Djurle, A., 2011. International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Dis. 95, 1204–1216. https://doi.org/10.1094/PDIS-04-11-0316
DOI: https://doi.org/10.1094/PDIS-04-11-0316
Google Scholar
Simeone, R., Piarulli, L., Nigro, D., Signorile, M.A., Blanco, E., Mangini, G., Blanco, A., 2020. Mapping powdery mildew (Blumeria graminis f. sp. tritici) resistance in wild and cultivated tetraploid wheats. Int J Mol Sci. 24, 21(21):7910. https://doi: 10.3390/ijms21217910
DOI: https://doi.org/10.3390/ijms21217910
Google Scholar
Singh, R.P., Prasad, P.V.V., Reddy, K.R., 2015. Climate change: implications for stakeholders in genetic resources and seed sector. Adv Agron 129:117–180. https://doi.org/10.1016/bs.agron.2014.09.002
DOI: https://doi.org/10.1016/bs.agron.2014.09.002
Google Scholar
Tang, X., Cao, X., Xu, X., Jiang, Y., Lou, Y., Ma, Z., Fan, J., Zhou, Y., 2017. Effects of climate change on epidemics of powdery mildew in winter wheat in China. Plant Dis. 101, 1753–1760. https://doi.org/10.1094/PDIS-02-17-0168-RE
DOI: https://doi.org/10.1094/PDIS-02-17-0168-RE
Google Scholar
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., Ferreira De Siqeira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles ,L., Ortega-Huertas, M.A., Peterson, A.T., Phillips, O.L., Williams, S.E., 2004. Extinction risk from climate change. Nature 427:145–148. https://doi.org/10.1038/nature02121
DOI: https://doi.org/10.1038/nature02121
Google Scholar
Vollset, S.E., Goren, E., Yuan, C.W., Cao, J., Smith, A.E., Hsiao, T., Bisignano, C., Azhar, G.S., Castro, E., Chalek, J., Dolgert, A.J., Frank, T., Fukutaki, K., Hay, S., Lozano, R., Mokdad, A.H., Nandakumar, V., Pierce, M., Pletcher, M., Robalik, T., Steuben, K.M., Wunrow, H.Y., Zlavog, B.S., Murray, C.J.L., 2020. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the global burden of disease study. The Lancet 396(10258), 1285–1306. https://doi.org/10.1016/S0140-6736(20)30677-2
DOI: https://doi.org/10.1016/S0140-6736(20)30677-2
Google Scholar
Wheeler, T., Braun, J, 2013. Climate change impacts on global food security. Science 341, 508-513. https://doi.org/10.1126/science.1239402
DOI: https://doi.org/10.1126/science.1239402
Google Scholar
Xiao, Y., Wang, M., Song, Y., 2022. Abiotic and biotic stress cascades in the era of climate change pose a challenge to genetic improvements in plants. Forests, 13(5):780. https://doi.org/10.3390/f13050780
DOI: https://doi.org/10.3390/f13050780
Google Scholar
Zou, Y., Qiao, H., Cao, X., Liu, W., Fan, J., Song, Y., Wang, B., Zhou, Y., 2018. Regionalization of wheat powdery mildew oversummering in China based on digital elevation. Journal of Integrative Agriculture 17, 4: 901–910. https://doi.org/10.1016/S2095-3119(17)61851-3
DOI: https://doi.org/10.1016/S2095-3119(17)61851-3
Google Scholar
Authors
Aleksandra Pietrusińskaa.pietrusinska@ihar.edu.pl
Plant Breeding and Acclimatization Institute – National Research Institute, Radzików Poland
https://orcid.org/0000-0001-6089-7030
Authors
Monika ŻurekPlant Breeding and Acclimatization Institute – National Research Institute, Radzików Poland
https://orcid.org/0000-0002-4597-7734
Statistics
Abstract views: 176PDF downloads: 72
License
Copyright (c) 2024 Aleksandra Pietrusińska, Monika Żurek
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Monika Żurek, Piotr Ochodzki, Roman Warzecha, The use of allelopathic properties of sorghum (Sorghum bicolor) in reducing weed infestation of cereals , Bulletin of Plant Breeding and Acclimatization Institute: No. 287 (2019): Special issue
- Aleksandra Pietrusińska, Monika Żurek, Dariusz Mańkowski, The search for sources of biotic stress resistance in old varieties and landraces of wheat and triticale , Bulletin of Plant Breeding and Acclimatization Institute: No. 287 (2019): Special issue
- Monika Żurek, The influence of male-sterile cytoplasms on yields and agronomic traits of maize hybrids , Bulletin of Plant Breeding and Acclimatization Institute: No. 299 (2023): Regular issue
- Aleksandra Pietrusińska , Pyramiding efficiency of the genes of resistance to powdery mildew (Blumeria graminis f.sp. tritici) and brown rust (Puccinia triticina) in winter wheat , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Aleksandra Pietrusińska, Jerzy H. Czembor, Virulence structure of the Blumeria graminis f. sp. tritici population occurring in Poland across 2012–2013 , Bulletin of Plant Breeding and Acclimatization Institute: No. 274 (2014): Regular issue
- Marcin Wit , Piotr Ochodzki , Roman Warzecha , Ada Zawadzka , Monika Żurek , Ewa Mirzwa-Mróz , Emilia Jabłońska , Dorota Bylicka , Józef Adamczyk , Anna Rogacka, Janusz Rogacki , Krzysztof Wójcik , Wojciech Wakuliński , Fusarium temperatum — importance and harmfulness in maize crops, search and characterization of resistance sources , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Jerzy Czembor, Aleksandra Pietrusińska, Kinga Smolińska, Interaction between powdery mildew (Blumeria graminis f.sp. hordei) resistance determined by mlo gene and economical value characteristics in winter barley , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Aleksandra Pietrusińska, Jerzy H. Czembor, Gene pyramiding — a tool commonly used in breeding programs breeding programs , Bulletin of Plant Breeding and Acclimatization Institute: No. 278 (2015): Regular issue
- Grzegorz Żurek, Danuta Martyniak, Monika Żurek, Evaluation of the usefulness of straw from selected species and varieties of cereals and grasses for the production of drinking straws , Bulletin of Plant Breeding and Acclimatization Institute: No. 300 (2023): Regular issue
- Jerzy H. Czembor, Aleksandra Pietrusińska, Urszula Piechota, Hordeum bulbosum — as a source of effective resistance to barley leaf rust , Bulletin of Plant Breeding and Acclimatization Institute: No. 281 (2017): Regular issue